
Master thesis

Philip Mark Suskin

Optimal Control of a Field-Free-Point
Using a Multi-Coil Magnetic Field

Generator

April 14, 2025

supervised by:
Prof. Dr.-Ing. Tobias Knopp
Dr. rer. nat. Martin Möddel
Fynn Förger

Hamburg University of Technology
Institute for Biomedical Imaging
Schwarzenbergstraße 95
21073 Hamburg

University Medical Center Hamburg-Eppendorf
Section for Biomedical Imaging
Martinistraße 52
20246 Hamburg

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Benutzung
der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Hamburg, den 11.04.2024

Contents

1 Introduction 4

2 Problem Statement 6

3 Experiments & Methods 8
3.1 Current Sequence Optimization . 9
3.2 Numerical Setup . 18
3.3 Implementation . 20
3.4 Analysis . 20

4 Results 21
4.1 Numerical Setup . 21
4.2 Current Sequence Optimization . 22

5 Discussion & Outlook 26

6 Appendix 28

3

1
Introduction

Dynamic field generation is an essential but highly power-consuming process. In particular,
as systems are scaled up in size, generating associated magnetic fields becomes a highly
arduous, if not infeasible, task [1]. This thesis investigates the control of multi-coil systems
to optimize power efficiency, with a particular focus on modeling the non-linear current-to-
field relationship introduced by the use of soft iron cores in the field generator’s coil design.
Using optimization techniques and neural networks, a novel method for controlling generated
magnetic fields in a power-efficient manner is proposed.
The demonstrations in this thesis are based on experiments using a prototypical selection
field generator intended for Magnetic Particle Imaging. Magnetic Particle Imaging (MPI) is a
tomographic medical imaging method based on the determination of iron oxide nanoparticle
concentration [2]. The magnetic fields required for MPI are generated through complex multi-
coil systems and are separated into a selection field and a focus field, which play distinct roles
in spatial encoding and signal generation, respectively. Of the two fields, the selection field
requires the most power, presenting a challenge as MPI systems are scaled to human-sized
applications.
Selection fields facilitate spatial encoding by producing a Field-Free Point (FFP) or Field-Free
Line (FFL). These are crucial to MPI, as they define regions in which the magnetic field
strength is approximately zero, enabling the detection of nanoparticles by measuring the
dynamic response to shifts in their position. To this end, for imaging, the position of either
an FFP or FFL is shifted over time along some defined trajectory while superimposed by a
respective gradient strength. The series of fields that must be generated in order to produce
FFPs/FFLs along the defined trajectory is called a field sequence.
The selection field generator used for experimentation comprises 18 total coils arranged in
two parallel 3 × 3 coil grids spaced 10 cm apart, see Figure 1.1. Within each grid, coils are
positioned side by side with a center-to-center distance of 5 cm between adjacent coils. These
coils are (independently) powered by currents, leading to the generation of magnetic fields
with an FFP in the field space.
Magnetic fields can be represented by an expansion based on spherical harmonics [3]. Spher-
ical harmonics form a basis for source-free quasi-static magnetic fields and thus provide
efficient representations of magnetic fields within some defined sphere radius R ∈ R+.

4

Introduction 5

Figure 1.1: MPI selection field generator setup

Using the proposed setup to establish a proof of concept, the main objective in this work
involves determining an optimal1 current sequence that produces some target field sequence,
a variation of the inverse current problem. The goal is to show that this can be achieved by
modeling the forward problem (current sequence to field sequence) with neural-network-based
approximations around spherical harmonics and subsequently optimizing over the current
sequence w.r.t. power consumption within the constraints posed by the field sequence.

1An optimal current sequence is one that is minimal w.r.t. the sum of the squares of the individual current
strengths, since this is proportional to power consumption.

2
Problem Statement

The selection field generator used for experimentation comprises 18 soft iron core coils
arranged to be capable of producing desired magnetic fields. However, this system is in-
trinsically integrated with a non-linear relationship between current and magnetic field, i.e.,
changes to input currents are not proportional to resulting changes to the output magnetic field.
Consequently, the key challenge of this work lies in developing a control algorithm that is
capable of modeling this non-linear relationship, while also minimizing power consumption
and meeting constraints stemming from both the desired magnetic field sequence as well as
the hardware in medical imaging applications.
In the context of the detailed FFP-based selection field generator, the primary goal of this
work involves designing an algorithm that effectively controls the positioning of an FFP over
time, which is crucial for spatial encoding in MPI. This is achieved through optimization
of current sequences applied to the multi-coil system. Power consumption is minimized
under constraints on field properties, such as the precision of FFP position within a defined
trajectory, as well as constraints pertaining to the hardware, i.e., to the currents applied to each
coil. These constraints must reflect both theoretical considerations and practical limitations
based on real-world measurements and system specifications.
The challenges associated with the defined optimization problem include the following:

1. Accurately modeling the non-linear current-to-field relationship integrated into the
selection field generator.

2. Designing a control algorithm for field sequences (FFP trajectories) that minimizes
power consumption while maintaining the required field dynamics.

3. Implementing a scalable, computationally efficient approach that remains feasible for
real-time medical imaging applications when scaling up bore size1.

This thesis aims to provide a proof of concept for an approach which addresses these challenges
by experimenting on a simplified model of the multi-coil field generator. The experimental
setup is illustrated in Figure 2.1. In this setup, only the 4 coils in the top-left corner of the
left grid are powered by current. In Section 3.1.3, a method for simulatively augmenting
this setup is detailed, such that the four coils on the right grid which are positioned directly
opposite the initial four coils, are treated as if they were powered by current as well.

1In the context medical imaging applications, bore size refers to the diameter of the cylindrical space in which
a patient lies.

6

Problem Statement 7

Figure 2.1: Visualization of experimental setup

3
Experiments & Methods

In order to achieve power-efficient control of field sequences for the presented selection field
generator, a multi-faceted algorithm based on neural networks and non-linear optimization
was developed. A visual representation of the algorithmic approach is presented in Figure 3.1,
wherein the key components of the surrogate model for the forward problem, field estimation
and singular value estimation, are visualized in their neural network form. This section outlines
the experiments, design choices, and methodology used to model the examined system’s
non-linear current-to-field relationship, optimize its power consumption, and evaluate the
resulting control algorithm.

field
estimation

singular
value

estimation

optimization

currents field
parameters

x
y

z

Figure 3.1: Visualization of optimization approach

8

Experiments & Methods 9

3.1 Current Sequence Optimization

3.1.1 Problem Definition

The methodology of this thesis formalizes the task of optimal control as an optimization
problem, where the input variables are the current sequences I(t) : [0,T] 7→ R3, T ∈ R
applied to each of the four coils in the top left of the left grid of the selection field generator
(mirrored onto the four coils in the top left of the right grid). The objective of the optimization
is to minimize power consumption P(·), in this case the sum of the squares of the input currents,
while maintaining control over the FFP given some FFP trajectory γ(t) : [0,T] 7→ R3, T ∈ R,
i.e., keeping the magnetic field strength B (γ (t) , c (I (t))) : R3 × R3×n 7→ R3, n ∈ {x2|x ∈ Z}
close to zero at the target FFP position γ(t) based on the spherical harmonic coefficients
c (I (t)) computed by the field prediction model for each step in the sequence.
The objective function for the optimization problem is defined as follows:

argmin
I(t)

P (I (t)) , P (I (t)) ∝ ∥I(t)∥22, ∥ · ∥2 is the �2 norm. (3.1)

Constraints to the optimization problem that reflect both physical hardware limitations as well
as field dynamic requirements are also defined. The hardware constraints concern current
bounds and slew rate1 limits and are defined as follows:

Imin ≤ In(t) ≤ Imax, n ∈ [1, 4], (3.2a)

∆Imin ≤ İn(t) ≤ ∆Imax, n ∈ [1, 4]. (3.2b)

The field dynamic constraints concern FFP trajectory precision and are defined as follows:

|Bi (γ (t) , c (I (t)))| ≤ ϵ , i ∈ {x, y, z}, (3.3a)

σmin
(
JrB|(γ(t),c(I(t)))

)
≥ g, (3.3b)

where σmin : Rn×m 7→ R, n,m ∈ N denotes the smallest singular value of some two-
dimensional matrix, in this case the Jacobian of the matrix for the magnetic field with
respect to position r in three-dimensional field space evaluated at the current FFP position
γ(t) for the predicted spherical harmonic coefficients c (I (t)). It is possible to constrain the
gradient field in this way, since the quasi-static approximation of Maxwell’s equations is

1The slew rate defines the maximum rate of change for an amplifier’s output voltage, which is proportional to
the current for a fixed resistance.

Experiments & Methods 10

assumed for the system used in this work. This implies that the following one of Maxwell’s
equations,

∇ × B = µ0

(
J + ϵ0

∂E
∂t

)
, (3.4)

reduces to zero when no current density J is present, since the time derivative of the E-field
∂E/∂t can be neglected. This necessarily means that the Jacobian of the magnetic field with
respect to position evaluates to a symmetric matrix for which, due to the invariance under
unitary transformation of symmetric matrices, the smallest singular value determines the
gradient field strength.
Each of the implemented constraints underlies a certain physical explanation for the system
used in this work. Equation 3.2a represents a natural range of coil current bounds, in addition
to matching the training currents used for the development of a field prediction model,
detailed in Section 3.1.3. Equation 3.2b limits the slew rate, i.e., the change in current for
each respective coil between each time step, as currents in coils cannot be changed arbitrarily
quickly by the magnetic amplifiers in this system. Furthermore, there are physical constraints
on the slew rate due to Lenz’s law, which states that a changing magnetic field induces an
electric current whose direction is such that the magnetic field generated by the induced
current opposes changes in the initial magnetic field [4]. Equation 3.3a limits the magnetic
field strength at the target FFP position, which ideally equals zero. Equation 3.3b ensures a
sufficient gradient field strength at the target FFP position, which, together with Equation 3.3a
limits the distance2 that can lie between the true FFP and the proposed FFP, i.e., limits the
FFP offset, at any given time step in the sequence. This can be shown using the following
simplified equation for the magnetic field at the FFP position:

∥Bγ∥ = ∥gγ∥ · ∥∆r∥, (3.5)

where Bγ and gγ are the field strength and gradient strength at a position γ, respectively, and
∆r is the FFP offset. Transformed, this equation directly illustrates the relationship between
FFP offset and both field strength and gradient strength:

∥∆r∥ =
∥Bγ∥
∥gγ∥

. (3.6)

This allows for estimation of the expected maximum FFP offset based on the constraints
defined for B (Equation 3.3a) and g (Equation 3.3b). For example, constraining the magnetic
field strength to values between ±1× 10−4 T and the gradient strength to values above 0.1 T/m
limits the expected FFP offset to approximately 1 × 10−3 m, with decreases to the magnetic
field strength constraint and increases to the gradient strength constraint each leading to a
smaller expected maximum FFP offset.

2Euclidean distance.

Experiments & Methods 11

3.1.2 Optimization Algorithm

IPOPT (Interior Point OPTimizer) [5], an open source software package for large-scale non-
linear optimization based on first- and second-order derivatives, is used as a solver for the
optimization problem defined by these conditions. In general, IPOPT is capable of solving
non-linear problems of the following form:

minx∈Rn f (x)
s.t. hL ≤ h(x) ≤ hU

xL ≤ x ≤ xU ,
(3.7)

where x ∈ Rn are the optimization variables with lower and upper bounds xL ∈ (R ∪ {−∞})n

and xU ∈ (R ∪ {+∞})n with xL ≤ xU , f : Rn → R is the objective function, and h : Rn → Rm

are the non-linear constraints.
As an interior point method (IPM), IPOPT traverses the interior of the feasible region, i.e.
the region of the solution space in which all constraints are satisfied [6]. In order to stay
within this region without having to directly handle inequality constraints3, barrier functions,
functions which discourage the optimizer from approaching the boundary of the feasible
region too closely, are implemented. IPOPT implements a logarithmic barrier function ϕ,
which penalizes solutions approaching the boundaries of the constraints h(x) ≥ 0 (constraints
of the form h(x) ▷◁ c, c ∈ Rm can be brought into this form via linear transformation) as
follows:

ϕ(x, µ) = f (x) − µ
∑

i

ln(hi(x)), (3.8)

where µ ∈ R+ is the barrier parameter controlling the weight of the penalty. As µ→ 0, the
solution of the barrier problem converges to the solution of the original optimization problem.
To this end, µ is iteratively reduced between solutions to the barrier problem found using a
linear solver, which involves satisfying the Karush-Kuhn-Tucker (KKT) conditions [7], a set of
conditions necessary for a solution to be optimal in a constrained optimization problem. For
each of these conditions, residuals (KKT residuals) can be computed to assess convergence
toward optimality. The linear solver used as part of IPOPT in the implementation as part
of this thesis is MUMPS (MUltifrontal Massively Parallel sparse direct Solver) [8] [9], an
algorithm based on the multifrontal method [10] which is commonly implemented for solving
large and sparse systems of linear equations. An algorithmic definition of IPOPT is provided
in Algorithm 3.1.

3Indirect handling of inequality constraints has several practical and computational benefits. Inequality
constraints introduce issues such as numerical instability along the boundaries of the feasible region, since
the lower/upper bounds of inequality constraints lead to non-differentiable points in the solution space.

Experiments & Methods 12

Algorithm 3.1 Interior Point Method for Nonlinear Optimization
1: Input: Objective function f (x), inequality constraints h(x) ≥ 0, initial guess x0, barrier

parameter µ0 > 0, reduction factor τ > 1, stopping tolerance ϵ > 0.
2: Initialization: Set x = x0, µ = µ0. Ensure x0 lies strictly in the interior of the feasible

region (h(x0) > 0).
3: while Stopping criteria are not met do
4: Solve the following barrier problem using some linear solver:

min
x
ϕ(x, µ) = f (x) − µ

m∑

i=1

ln(hi(x))

5: Update the solution x to the result of the barrier problem.
6: Reduce the barrier parameter:

µ =
µ

τ
.

7: Check for convergence:
8: if The KKT residuals are below ϵ : then
9: Stop. Return x as the solution.

10: end if
11: end while

3.1.3 Modeling Network Constraints

While defining the optimization problem in its entirety, key components of the problem’s
constraints were modeled using neural-network-based approximations in order to maximize
computational efficiency while making constraints differentiable. This comprised field predic-
tion or, more specifically, spherical harmonic coefficient prediction c(I(t)) in Equation 3.3a,
as well as smallest singular value prediction σmin(·) in Equation 3.3b. The benefit of differen-
tiable constraints is that they enable the implementation of gradient descent algorithms for
optimization, which provide a variety of advantages, particularly with regard to runtime and
computational efficiency.
Spherical harmonic coefficient prediction is used for magnetic field estimation within the
sphere radius R = 4.5 cm in this work. Spherical harmonics are a class of orthogonal functions
defined on the surface of a sphere. These functions, denoted by Ym

l (θ, ϕ), where l ∈ N and
m ∈ Z are integers representing the degree and order of the harmonic, respectively, and
θ ∈ [0, π] and ϕ ∈ [0, 2π) are the polar and azimuthal angles, respectively, naturally lend
themselves to problems exhibiting spherical symmetry, such as the generation of magnetic
fields in MPI scanners. The fields induced by running currents through the coils of the
corresponding field generators can be expressed as a linear combination of these spherical
harmonics, with the coefficients of the individual harmonics representing the strength of the
respective harmonic in the field. When working with spherical harmonics, particularly with
regard to computational efficiency, the concept of t-designs becomes a valuable asset. A set

Experiments & Methods 13

of N ∈ N points defined on the surface of a sphere is called a t-design if the integral of any
polynomial p of degree k := deg p ≤ t, t ∈ N over the sphere can be approximated4 by a
discrete sum over these points. In the context of spherical harmonic expansions, selecting a
suitable t-design can significantly reduce computational overhead while preserving accuracy.

Field Prediction

Given the soft iron core’s impact on magnetic field generation, development of a non-linear
model for the current-to-field relationship was essential. A neural network is used to ap-
proximate this relationship, utilizing training data derived from empirical measurements of
the fields generated under various currents. The model implemented as part of this thesis
expands on findings from [11], which proposes a model architecture, data pre-processing,
and a training strategy for magnetic field prediction. The model architecture used for training
is presented in Figure 3.2. The implemented model was trained using 9150 adjusted training
samples, optimized to minimize prediction error across different regions of the selection field
generator’s Field Of View (FOV) and thereby providing an accurate basis for field predictions.
Training samples were generated through field simulation in the COMSOL Multiphysics
Software [12]. As in the model implementation proposed in [11], both input (currents to the
four top-left coils of the left coil grid) and output (spherical harmonic coefficients defining
the corresponding magnetic field) data was normalized using z-score normalization. Training
was performed for a total of 250 epochs, after which the model weights yielding the lowest
loss during training were used for inference.
The scope of this model’s applicability for field prediction is extended from modeling the
magnetic field generated when applying currents to the four top-left coils of the selection field
generator’s left coil grid to modeling the magnetic field generated when also applying mirrored
currents to the four top-left coils of its right coil grid, see Figure 3.3. This is achieved by
augmenting the spherical harmonic expansion polynomials with a transformation about the
y-axis (the axis along which the grids face each other). This involves negating the y-coordinate
of the position in field space γy for each field direction, negating the y-components of the
spherical harmonic coefficients cy for the magnetic field in y-direction, and finally adding the
resulting polynomials to the original polynomials. More formally, given the original spherical
harmonic expansion polynomials

Bi = f (γ, ci) := f (γx, γy, γz, ci), i ∈ {x, y, z}, (3.9)

augmentation is performed, resulting in the following definitions:

B j = f (γx, γy, γz, c j) + f (γx,−γy, γz, c j), j ∈ {x, z}, (3.10a)

By = f (γx, γy, γz, cy) + f (γx,−γy, γz,−cy). (3.10b)

4More specifically, the integral of p is equal to the average value of p over the set of N points.

Experiments & Methods 14

Input Layer
4 neurons

Dense Layer + LeakyReLU (α = 0.2)
1024 neurons

Dense Layer + LeakyReLU (α = 0.2)
1024 neurons

Output Layer
147 neurons (49 Ö 3)

10Ö

MSE Loss
1
n

∑
(y − ŷ)2

Target (y)

Adam Optimizer
Adaptive Moment Estimation

Figure 3.2: Visualization of model architecture, optimizer, and loss function for field prediction model

Negating the y-coordinate of the position in field space is a necessary augmentation to each
of the spherical harmonic expansion polynomials, since γy = 0 defines the plane exactly in
between and parallel to the coil grids of the selection field generator. To this end, negating the
y-coordinate mirrors the position in field space about this plane, allowing the corresponding
field prediction model output to mimic the strength of the magnetic field in the original
position in field space that would be generated if only the four top-left coils in the right coil
grid were active. Negating the y-components of the spherical harmonic coefficients is a
further necessary augmentation specifically to the expansion polynomial for the y-direction,
since the magnetic field generated by the right coil grid is exactly inverted to that generated
by the left coil grid in the y-direction.
Using this method of augmentation, it is effectively possible to model a total of eight input
currents in coils on both sides of the selection field generator with a field prediction model
originally designed for four input currents to coils solely on the left coil grid of the field
generator.

Smallest Singular Value Prediction

The Singular Value Decomposition (SVD) is known to be a computationally expensive
procedure (time complexity of O(mn ·min(m, n)) given a matrix M ∈ Rm×n). Although matrix
dimensions are fixed and thus do not scale with any physical quantity of the system used in
this work, the runtime associated with executing the Singular Value Decomposition using a

Experiments & Methods 15

IL7

IL4

IL1

IL8

IL5

IL2

IL9

IL6

IL3

I = 0A I = 0A

I = 5A I = 5A

NA

NA

NA NA NA

(a) Left coil grid

mirrored currents

IR7

IR4

IR1

IR8

IR5

IR2

IR9

IR6

IR3

I = 0A I = 0A

I = 5A I = 5A

NA

NA

NA NA NA

(b) Right coil grid

Figure 3.3: Visualization of the coil grid setup with simulative mirroring of the currents of the left
coil grid to the right coil grid

numerical approach is still substantial, since this operation is executed frequently as part of
the optimization algorithm. To this end, an approach comprising a differentiable and lower
runtime algorithm for the SVD using a neural network was proposed. More specifically, based
on the constraint definition in Equation 3.3b, a neural network was trained for the prediction
of the smallest singular value in a symmetric 3 × 3 matrix.
Training a model for the purpose of smallest singular value prediction first involved gener-
ating synthetic training data resembling practical measurements using Wigner’s semicircle
distribution for the generation of eigenvalues for random Hermitian matrices [13], as well
as the Haar distribution for the generation of eigenvectors for random unitary matrices [14].
Wigner’s semicircle distribution serves as an adequate distribution for random eigenvalues,
since Wigner’s semicircle law states that the distribution of eigenvalues in symmetric n × n
matrices whose entries are independent and identically distributed random variables resem-
bles the shape of a semicircle (particularly as n goes to infinity) [15], defined by the following
probability density function:

f (x) =

{
2
πR2

√
R2 − x2 if |x| ≤ R,

0 otherwise.
(3.11)

The Haar distribution then serves as an adequate distribution for corresponding eigenvectors,
since the Haar measure provides a uniform distribution over the group of orthogonal matrices
[16]. Training data is ultimately generated by diagonalization as follows:

QΛQ−1, Λ := diag(λ1, . . . , λn), (3.12)

where Q is the matrix containing the Haar-distributed eigenvectors column-wise and λ1, . . . , λn
are the eigenvalues pulled from Wigner’s semicircle distribution.
Random symmetric matrices are generated to provide testing data using a separate process to
assess the robustness of this model, in this case initializing matrices via Gaussian orthogonal
ensembles [17]. Gaussian orthogonal ensembles provide an adequate model for random

Experiments & Methods 16

symmetric matrices, since they are described by the Gaussian measure on the space of square
real symmetric matrices [18].
The difference in generated matrices between the training and testing data can be best visual-
ized by plotting their respective eigenvalue distributions, which also illustrates the general
magnitude of eigenvalues, see Figure 3.4.

−2 −1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

Value

P
ro
b
ab

il
it
y
D
en

si
ty

Distribution of eigenvalues for training and testing data

Training
Testing

Figure 3.4: Eigenvalue distributions of training and testing data for gradient estimation model

Model architectures and training parameters were defined based on findings from [19]. The
model architecture, optimizer, and loss function used for training is presented in Figure 3.5.
Finally, training was performed using the six upper triangle matrix values as input and the
smallest singular value of the matrix as output. Before training the final model, a preliminary
model was trained using all three singular values as output to establish a proof of concept.
Twelve plots visualizing the predictive accuracy of this preliminary model can be found
in the Appendix under Figure 6.1. For the final model, training and validation loss curves
encountered over the course of 5000 training epochs are presented in Figure 3.6. The curves
indicate that, though improvements to model accuracy stagnate after approximately 512
epochs, overfitting, i.e., a reduction in model generalization capabilities due to fixation on
the training data, is avoided throughout all 5000 epochs. After training, model accuracy
was further assessed by evaluating the relative difference between the true smallest singular
value and that predicted by the model across the aforementioned testing data. This difference
is further compared to a baseline model for smallest singular value prediction that simply
outputs the mean smallest singular value across the testing data regardless of the matrix values
it receives as input, yielding the results presented in Table 3.1.

Experiments & Methods 17

Input Layer
6 neurons

Dense Layer + ReLU
100 neurons

Dense Layer + ReLU
75 neurons

Dense Layer + ReLU
25 neurons

Dense Layer + ReLU
10 neurons

Output Layer
1 neuron

MAE Loss
1
n

∑ |y − ŷ|

Target (y)

Adam Optimizer
Adaptive Moment Estimation

Figure 3.5: Visualization of model architecture, optimizer, and loss function for smallest singular
value prediction model

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

10−2.5

10−2

10−1.5

Epoch

L
os
s

Loss curves logged during training of smallest singular value prediction model

Training loss
Validation loss

Figure 3.6: Loss curves for training of smallest singular value prediction

Experiments & Methods 18

Difference metric Trained model Baseline model
Mean 0.0033 0.1095
Std. dev. 0.0029 0.0828
Max. 0.0457 0.7171

Table 3.1: Comparison of smallest singular value prediction accuracy between trained model and
baseline model

3.2 Numerical Setup

The target FFP trajectory used for analysis is defined as follows:

γ(t) :=




x(t)
y(t)
z(t)


 =



−0.04

9 (t − 1) m
0
0


 , t ∈ [1, 10], (3.13)

where t indexes the sequence of points along this trajectory by temporal discretization with
time steps ∆t. The magnitude of the time steps is not explicitly defined, since the only time-
dependent aspect of the optimization problem, namely the constraint on the change in current,
refers to the differences in current between each step in the corresponding sequence rather
than between some two discrete points in time. The points of the trajectory are visualized in
Figure 3.7.

−7
5

−5
0

−2
5

0

25

50

75−100

0

100

−75

−50

−25

0

25

50

75

L1

L2

L3L4

L5

L6L7

L8

L9

R1

R2

R3R4

R5

R6R7

R8

R9

x / mm
y / mm

z / mm

Target FFP Trajectory

−40−35
.6

−31
.1

−26
.7

−22
.2

−17
.8

−13
.3−8.

9
−4.

4 0

0

x

z

Figure 3.7: Visualization of points on target FFP trajectory

Experiments & Methods 19

Initial constraints to the optimization problem are defined as follows:

0 A ≤ In(t) ≤ 10 A, n ∈ [1, 8], (3.14)∣∣İn(t)
∣∣ ≤ 5 A/∆t, n ∈ [1, 8], (3.15)

|Bi (γ (t) , c (I (t)))| ≤ 2.5 × 10−5 T, i ∈ {x, y, z}, (3.16)
σmin

(
JrB|(γ(t),c(I(t)))

)
≥ 0.1 T/m. (3.17)

In an effort to improve numerical stability and balance the influence of each of these constraints,
the constraint bounds are normalized to absolute values of one [20]. The better-conditioned
constraint definitions are as follows:

−1 A ≤
In(t) − 5

5
≤ 1 A, n ∈ [1, 8], (3.18)

−1 A/∆t ≤
İn(t)

5
≤ 1 A/∆t, n ∈ [1, 8], (3.19)

−1 T ≤ Bi(γ(t), c(I(t))) · 2.5 · 105 ≤ 1 T, i ∈ {x, y, z}, (3.20)
σmin

(
JrB|(γ(t),c(I(t)))

)
· 10 ≥ 1 T/m. (3.21)

As a further improvement to the definition of the optimization problem, based on previous
empirical trials in COMSOL, the currents are initialized as IL1(t) = IL2(t) = IR1(t) = IR2(t) =
0 A and IL4(t) = IL5(t) = IR4(t) = IR5(t) = 5 A for each time step t ∈ [1, 10]. This initialization,
due to symmetry, leads to an FFP at approximately [−0.025 m 0 0], i.e., approximately at
the center of the FFP trajectory. Visualizing the magnetic field based on spherical harmonic
coefficients computed by the field prediction model verifies this assertion regarding the
position of the FFP, see Figure 3.8.

Figure 3.8: Visualization of predicted magnetic field

Experiments & Methods 20

3.3 Implementation

The final implementation of the optimal control algorithm is based entirely on Julia [21], a
programming language designed for numerical computing, particularly in scientific contexts.
The key packages responsible for each of the crucial aspects of the optimal control algorithm
are listed in Table 3.2.

Aspect of Implementation Responsible Package(s)
Design & Solution of Optimization Problem JuMP [22], Ipopt [5]
Neural Network Design, Training, & Inference Flux [23] [24]
Magnetic Field Prediction SphericalHarmonicExpansions [25],

DynamicPolynomials [26]

Table 3.2: Statistical characteristics of tokenized sequences (auto-regressive)

Since the field prediction model was originally trained in Python [27] using PyTorch [28], a
custom conversion script was executed to transfer the model architecture to Flux. The exact
script can be found in the Appendix under Listing 6.1.
Using an implementation of the control algorithm in Julia, it is possible to optimize current
sequences for given trajectories and constraint parameters on consumer-grade CPU hardware.
The CPU used in this work is an AMD Ryzen 5 PRO 5675U.

3.4 Analysis

The results of the current sequence optimization for the numerical setup are first evaluated on
the basis of the magnitude of the post-optimization value of the objective function (power
consumption) and the accuracy of the field sequence generated by the optimized current
sequence (FFP offset), since these metrics are most relevant for practical applications. Sub-
sequently, these metrics are analyzed together with algorithmic efficiency (iteration count
and computation time) and model accuracy (deviation in gradient prediction) for comparison
across various degrees of gradient constraint (Equation 3.3b). As part of this analysis, partic-
ular focus is placed on the trade-off between reducing the FFP offset and minimizing power
consumption.

4
Results

4.1 Numerical Setup

The optimization result for the numerical setup defined in Section 3.2 yielded a current
sequence that provided a basis for the analysis of FFP offset, gradient prediction accuracy, and
power consumption. FFP offset and stepwise power consumption are visualized in addition
to the FFP trajectory produced by the optimized currents in Figure 4.1.

−70 −60 −50 −40 −30 −20 −10 0

0

10

20

30

40

12345678910

9

10

Position along x-axis / mm

P
os
it
io
n
al
on

g
z
-a
x
is

/
m
m

Target vs. True FFP Trajectory

Goal Trajectory
True FFP Trajectory

0

1

2

3

4

P
ow

er
con

su
m
p
tion

/
W

−70 −60 −50 −40 −30 −20 −10 0

0

10

20

30

40

12345678910

9

10

Position along x-axis / mm

P
os
it
io
n
al
on

g
z
-a
x
is

/
m
m

Target vs. True FFP Trajectory

Goal Trajectory
True FFP Trajectory

0

1

2

3

4

P
ow

er
co
n
su
m
p
tio

n
/
W

Figure 4.1: Visualization of target and result FFP trajectory

The plot in Figure 4.1 displays unusual behavior for the last two (ninth and tenth) steps of
the FFP trajectory of the optimized current sequence. More specifically, these points on
the trajectory, while maintaining low respective power consumption, produce FFP offsets of
magnitudes that should not be achievable according to Equation 3.6. The explanation for this
behavior lies in the fact that the final points of the target FFP trajectory approach the bounds
of the sphere defined by the spherical harmonics (radius R = 4.5 × 10−3 m) too closely. To

21

Results 22

account for this, a subsequent analysis was performed specifically for only the first eight
sequence steps, visualized in Figure 4.2.

0.0−4.4−8.9−13.3−17.8−22.2−26.7−31.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

12345678

1

2
3

4
567

8

Position along x-axis / mm

P
os
it
io
n
al
o
n
g
z
-a
x
is

/
m
m

Target vs. True FFP Trajectory

Goal Trajectory
True FFP Trajectory

0

1

2

3

4

P
ow

er
con

su
m
p
tion

/
W

Figure 4.2: Visualization of target and result FFP trajectory (first 8 steps in sequence)

From the plot in Figure 4.2, it is clear that the FFP offset is much more uniform for the
first eight steps of the trajectory, with magnitudes at or below the maximum expected offset
according to Equation 3.6. Stepwise power consumption also behaves as expected, with peak
consumption reached at the seventh point on the trajectory, i.e., at x = 0.026. This stands
to reason because this is the closest point along the trajectory to being directly between the
center and leftmost coils of the coil grid (recall that since the coils in the grid are spaced
5 cm apart center-to-center, the exact point along the x-axis is located at x = 0.025). Creating
an FFP between these coil pairs requires an elevated level of power consumption due to
the requirement on the fields to cancel each other out at a point which is farthest from any
given coil center than is the case for all other points on the trajectory. For the points around
this point on the trajectory, the power consumption falls monotonically and approximately
symmetrically.

4.2 Current Sequence Optimization

A series of six optimizations with varying degrees of gradient constraint was performed for
the same eight-step trajectory as detailed in the numerical setup in Section 4.1, with constraint
definitions ranging from g = 0.025 T/m to g = 0.5 T/m. Constraint values are uniformly
logarithmically distributed (base two) from 0.025 to 0.4 T/m, with the additional value of
0.5 T/m serving to illustrate the limits of the trade-off between minimizing power consumption
and minimizing FFP offset. In addition to the iteration count and the computation time, the

Results 23

termination status obtained with IPOPT is listed for each optimization in Table 4.1. A list of
all possible termination criteria with corresponding explanations can be found in the Appendix
under Table 6.1.

g (in T/m) Iter. Time (in s) Iter. per second Termination status
0.025 263 224.488 1.172 Almost locally solved
0.05 166 138.044 1.203 Almost locally solved
0.1 111 75.447 1.471 Almost locally solved
0.2 253 253.867 0.997 Almost locally solved
0.4 281 274.579 1.023 Locally infeasible
0.5 90 58.159 1.759 Locally infeasible

Table 4.1: Overview of iteration count, computation time, and termination status for performed
optimizations

The measurements in Table 4.1 illustrate that while the number of iterations performed
during optimization fluctuates between the defined constraint values, the number of iterations
performed per second is consistently around 1 for each of the optimizations performed given
the utilized CPU.
In addition to optimization time and iteration count, power consumption, FFP offset, and
gradient prediction accuracy were analyzed for each optimization. The corresponding values
are listed in Table 4.2. Due to fixed current initialization defined in Section 3.2, these results
are obtained in deterministic fashion. Gradient prediction accuracy is assessed by calculating
the relative deviation of the predicted smallest singular value of the gradient from its true
smallest singular value at each point on the trajectory, defined as follows:

∣∣σminpred − σmintrue

∣∣
g

, (4.1)

where σminpred and σmintrue are the predicted and true smallest singular values and g is the
gradient constraint.

g (in T/m) Mean power
consumption (in W)

Mean FFP
offset (in mm)

Mean relative
gradient deviation

0.025 11.63 0.903 0.16
0.05 0.56 0.629 0.073
0.1 2.33 0.276 0.042
0.2 17.67 0.14 0.03
0.4 92.54 0.016 0.029
0.5 127.53 0.125 0.025

Table 4.2: Overview of power consumption and FFP offset for performed optimizations

Results 24

The most notable outcomes in terms of finding the optimal trade-off between power consump-
tion and FFP offset can be identified near g = 0.1 T/m. This can be demonstrated by plotting
the mean FFP offset against the mean power consumption for each of the optimization results,
see Figure 4.3. The relative gradient deviation decreases monotonically as the gradient con-
straint increases, although these measures are not quite inversely proportional. This indicates
that there is a certain degree of absolute error in addition to the expected relative error for the
outputs of the smallest singular value prediction model.

100 101 102
0

0.2

0.4

0.6

0.8

g = 0.025T/m

g = 0.05T/m

g = 0.1T/m

g = 0.2T/m

g = 0.4T/m

g = 0.5T/m

Mean Power Consumption / W

M
ea
n
F
F
P

O
ff
se
t
/
m
m

Mean FFP offset plotted against mean power consumption

Figure 4.3: Visualization of the trade-off between mean FFP offset and mean power consumption for
optimization with varying degrees of gradient constraint

Using the knee method on the plot in Figure 4.3, it can be reasoned that the optimization
results for g = 0.1 T/m and g = 0.2 T/m provide desirable trade-offs between FFP offset and
power consumption, assuming that these two measures are weighted similarly. Furthermore,
the points for each extreme of the gradient constraint (g = 0.025 T/m and g = 0.5 T/m)
are each dominated by their nearest neighbor, thereby defining boundaries on the range of
values for which the gradient constraint establishes a reasonable trade-off between FFP offset
and power consumption. The optimization results for the constraint value g = 0.5 T/m are
poor because the strength of this constraint brings solving the optimization problem under
this constraint to a point of near-infeasibility. On the other hand, the optimization results
for the constraint value g = 0.025 T/m are presumably poor due to a higher relative error
in smallest singular value prediction (see the mean relative gradient deviation presented in
Table 4.2), which could result from small diagonal matrix values associated with this low
constraint value. Small diagonal matrix values for the gradient field are expected for a low
constraint value, since the optimization algorithm attempts to find current sequences that

Results 25

achieve minimal power consumption, which generally implies minimal gradient strength.
Low matrix values may lead to a higher relative error in smallest singular value prediction in
two ways. Firstly, the gradient estimation model is largely trained with different matrix values
(the mean upper triangle matrix value in the training data is approximately 0.32) and may be
unable to generalize for smaller values. Secondly, there may be some intrinsic absolute error
in the model, leading to a higher relative error given smaller gradient values.

5
Discussion & Outlook

The experiments in this work provide a proof of concept that near-optimal current sequences for
given field sequences can be found consistently in minutes or even seconds on consumer-grade
CPU hardware. The experiments illustrate that current sequences with power consumption as
low as —and even below —the single-digit Watt range can be determined by the optimization
algorithm, which is a promising result. Moreover, arbitrarily low power consumption can be
achieved within limits in exchange for loss in FFP precision. Conversely, arbitrarily hier FFP
precision can be achieved within limits in exchange for higher power consumption.
The results achieved by the developed control algorithm are made possible mainly by the
neural-network-based surrogate models for the forward problem, i.e., field prediction and
gradient estimation. Not only are these models highly efficient1, they are differentiable and
thus suitable for optimization with gradient-based solvers. To this end, the use of a gradient-
based solver presents an opportunity for further improvements regarding runtime and solution
optimality.
For future work, the experimental setup could be extended from controlling four pairs of
mirrored coils to controlling all 18 coils of the selection field generator independently. Fur-
thermore, experimentation with different FFP trajectories could provide additional insight
into practical ranges of constraint values for optimization. Finally, varying the bounds of other
constraint definitions, such as the constraint for the magnetic field strength (Equation 3.3a),
could provide further useful results and potentially yield improvements regarding power
consumption and/or FFP offset.

1The field prediction model brings the execution time of approximately four minutes using COMSOL to an
execution time on the order of a single millisecond.

26

Acknowledgments

I would like to express great appreciation to my advisers, Dr. Martin Möddel and Fynn Förger,
for their support and encouragement. I would also like to thank Paul Jürß for his important
contributions to this work, as well as the IBI team for their help in presenting this work at the
14th International Workshop on Magnetic Particle Imaging (IWMPI). Finally, I am grateful to
the fantastic adviser of my previous research project, Dr. Jens Zemke, for his role as a second
examiner for this thesis, and to Prof. Dr.-Ing. Tobias Knopp for making this thesis possible.

27

6
Appendix

Criterion Description Default Value

tol Convergence tolerance for termination if
NLP error is below threshold.

10−8

s_max Scaling threshold for NLP error. 100
max_iter Maximum allowed iterations before termi-

nation.
3000

max_wall_time Maximum wall-clock time allowed. 1020

max_cpu_time Maximum CPU time allowed. 1020

dual_inf_tol Absolute tolerance for dual infeasibility. 1
constr_viol_tol Tolerance for constraint and bound viola-

tion.
0.0001

compl_inf_tol Absolute tolerance for complementarity
conditions.

0.0001

acceptable_tol "Acceptable" convergence tolerance level. 10−6

acceptable_iter Iterations allowed before "acceptable" ter-
mination.

15

acceptable_dual_inf_tol "Acceptable" threshold for dual infeasibil-
ity.

1010

acceptable_constr_viol_tol "Acceptable" constraint violation toler-
ance.

0.01

acceptable_compl_inf_tol "Acceptable" complementarity condition
tolerance.

0.01

acceptable_obj_change_tol Objective function change stopping crite-
rion.

1020

diverging_iterates_tol Threshold for detecting diverging iterates. 1020

mu_target Final value of barrier parameter for termi-
nation.

0

Table 6.1: Termination criteria for IPOPT

28

Appendix 29

1 using Flux
2 using BSON
3 using NPZ
4

5 # Define the Flux.jl model architecture
6 function create_model(num_neurons::Int, num_layers::Int)
7 layers = []
8 for i in 1:num_layers
9 push!(layers, Dense(num_neurons, num_neurons))

10 push!(layers, x −> leakyrelu.(x, 0.2))
11 push!(layers, Dropout(0.0)) # No dropout in your PyTorch model
12 end
13

14 return Chain(
15 Dense(4, num_neurons),
16 x −> leakyrelu.(x, 0.2),
17 layers...,
18 Dense(num_neurons, 49 ∗ 3)
19)
20 end
21

22 # Initialize the Flux.jl model with the PyTorch model’s weights and biases
23 function convert_model(model::Chain, WEIGHTS_DIR)
24 for (i, layer) in enumerate(model.layers)
25 # Check if weight and bias file exists
26 if isfile(joinpath(WEIGHTS_DIR, "layer_$(i − 1)_weights.npy"))
27 weights = npzread(joinpath(WEIGHTS_DIR, "layer_$(i − 1)_weights.npy"))
28 bias = npzread(joinpath(WEIGHTS_DIR, "layer_$(i − 1)_bias.npy"))
29

30 model_weights, model_bias = Flux.params(layer)
31 model_weights .= weights
32 model_bias .= bias
33 end
34 end
35 end
36

37 # Create the model
38 num_neurons = 2^10
39 num_layers = 10
40 model = create_model(num_neurons, num_layers)
41

42 WEIGHTS_DIR = joinpath(@__DIR__, "..", "..", "examples", "weights")
43

44 convert_model(model, WEIGHTS_DIR)
45

46 # Save the converted model
47 BSON.@save "model.bson" model

Listing 6.1: Converting PyTorch model to Flux.jl

Appendix 30

1
2

3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Value
P
re
d
ic
te
d

T
ru
e

1
2

3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

P
re
d
ic
te
d

T
ru
e

1
2

3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

P
re
d
ic
te
d

T
ru
e

1
2

3

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

1.
1

P
re
d
ic
te
d

T
ru
e

1
2

3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

P
re
d
ic
te
d

T
ru
e

1
2

3
0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

P
re
d
ic
te
d

T
ru
e

1
2

3
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

P
re
d
ic
te
d

T
ru
e

1
2

3

0

0.
2

0.
4

0.
6

0.
81

1.
2

Value

P
re
d
ic
te
d

T
ru
e

1
2

3

0.
4

0.
450.
5

0.
550.
6

0.
650.
7

0.
75

In
d
ex

Value

P
re
d
ic
te
d

T
ru
e

1
2

3
0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

In
d
ex

P
re
d
ic
te
d

T
ru
e

1
2

3

0
.3
5

0.
4

0
.4
5

0.
5

0
.5
5

0.
6

In
d
ex

P
re
d
ic
te
d

T
ru
e

1
2

3

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

In
d
ex

P
re
d
ic
te
d

T
ru
e

Fi
gu

re
6.

1:
Ex

am
pl

e
pl

ot
sv

is
ua

liz
in

g
si

ng
ul

ar
va

lu
e

pr
ed

ic
tio

n
ac

cu
ra

cy

Bibliography

[1] Fynn Foerger et al. “Low-power Iron selection and focus field generator”. In: IJMPI
8.1 Suppl 1 (2022).

[2] Tobias Knopp, Nadine Gdaniec, and Martin Möddel. “Magnetic particle imaging: from
proof of principle to preclinical applications”. In: Physics in Medicine & Biology 62.14
(2017), R124.

[3] Marija Boberg, Tobias Knopp, and Martin Möddel. Unique Compact Representa-
tion of Magnetic Fields using Truncated Solid Harmonic Expansions. 2023. arXiv:
2302.07591 [physics.med-ph]. url: https://arxiv.org/abs/
2302.07591.

[4] Ying Xin et al. “Superconductors and Lenz’s law”. In: Superconductor Science and
Technology 33.5 (2020), p. 055004.

[5] Andreas Wächter and Lorenz Biegler. “On the Implementation of an Interior-Point Fil-
ter Line-Search Algorithm for Large-Scale Nonlinear Programming”. In: Mathematical
programming 106 (Mar. 2006), pp. 25–57. doi: 10.1007/s10107-004-0559-y.

[6] A. Wächter and Carnegie Mellon University. Department of Chemical Engineering.
An Interior Point Algorithm for Large-scale Nonlinear Optimization with Applications
in Process Engineering. Carnegie Mellon University, 2002. url: https://books.
google.dk/books?id=pLDW0AEACAAJ.

[7] H. W. Kuhn and A. W. Tucker. “Nonlinear programming”. In: Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, 1950. Berkeley and
Los Angeles: University of California Press, 1951, pp. 481–492.

[8] P.R. Amestoy et al. “A Fully Asynchronous Multifrontal Solver Using Distributed
Dynamic Scheduling”. In: SIAM Journal on Matrix Analysis and Applications 23.1
(2001), pp. 15–41.

[9] P.R. Amestoy et al. “Performance and Scalability of the Block Low-Rank Multifrontal
Factorization on Multicore Architectures”. In: ACM Transactions on Mathematical
Software 45 (1 2019), 2:1–2:26.

[10] Joseph W. H. Liu. “The Multifrontal Method for Sparse Matrix Solution: Theory and
Practice”. In: SIAM Review 34.1 (1992), pp. 82–109. issn: 00361445, 10957200. url:
http://www.jstor.org/stable/2132786 (visited on 01/25/2025).

[11] Fynn Foerger et al. “Current-to-Field Prediction for Non-Linear Magnetic Systems via
Neural Networks”. In: IJMPI 11.1 Suppl 1 (2025). under review.

[12] COMSOL Multiphysics. “Introduction to COMSOL multiphysics®”. In: COMSOL
Multiphysics, Burlington, MA, accessed Feb 9 (1998), p. 2018.

31

https://arxiv.org/abs/2302.07591
https://arxiv.org/abs/2302.07591
https://arxiv.org/abs/2302.07591
https://doi.org/10.1007/s10107-004-0559-y
https://books.google.dk/books?id=pLDW0AEACAAJ
https://books.google.dk/books?id=pLDW0AEACAAJ
http://www.jstor.org/stable/2132786

Bibliography 32

[13] L. Arnold. “On Wigner’s semicircle law for the eigenvalues of random matrices”. In:
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 19.3 (Sept. 1971),
pp. 191–198. issn: 1432-2064. doi: 10.1007/BF00534107. url: https://
doi.org/10.1007/BF00534107.

[14] K. Wieand. “Eigenvalue distributions of random unitary matrices”. In: Probabil-
ity Theory and Related Fields 123.2 (June 2002), pp. 202–224. issn: 1432-2064.
doi: 10.1007/s004400100186. url: https://doi.org/10.1007/
s004400100186.

[15] Tianchong Jiang. “Wigner’s semicircle law for Gaussian random matrices”. In: Chicago
University (2021).

[16] Magnus Lundberg and Lennart Svensson. “The Haar measure and the generation of
random unitary matrices”. In: Processing Workshop Proceedings, 2004 Sensor Array
and Multichannel Signal. IEEE. 2004, pp. 114–118.

[17] Jose Angel Sanchez Gomez and Victor Amaya Carvajal. Uniqueness of the Gaussian
Orthogonal Ensemble. 2019. arXiv: 1901.09257 [math.PR]. url: https://
arxiv.org/abs/1901.09257.

[18] Vladimir Igorevich Bogachev. Gaussian measures. 62. American Mathematical Soc.,
1998.

[19] Derek Xu et al. “SV-Learn: Learning Matrix Singular Values with Neural Networks”.
In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW). 2022,
pp. 232–237. doi: 10.1109/ICDMW58026.2022.00039.

[20] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2e. New York, NY,
USA: Springer, 2006.

[21] Jeff Bezanson et al. “Julia: A fresh approach to numerical computing”. In: SIAM review
59.1 (2017), pp. 65–98.

[22] Miles Lubin et al. “JuMP 1.0: Recent improvements to a modeling language for
mathematical optimization”. In: Mathematical Programming Computation 15 (2023),
581–589. doi: 10.1007/s12532-023-00239-3.

[23] Michael Innes et al. “Fashionable Modelling with Flux”. In: CoRR abs/1811.01457
(2018). arXiv: 1811.01457. url: https://arxiv.org/abs/1811.01457.

[24] Mike Innes. “Flux: Elegant Machine Learning with Julia”. In: Journal of Open Source
Software (2018). doi: 10.21105/joss.00602.

[25] SphericalHarmonicExpansions.jl: A Julia package to handle spherical harmonic
functions. Version 0.1.3. url: https://github.com/hofmannmartin/
SphericalHarmonicExpansions.jl.

[26] Benoît Legat. “Multivariate polynomials in Julia”. In: JuliaCon. July 2022. url:
https://pretalx.com/juliacon-2022/talk/TRFSJY/.

https://doi.org/10.1007/BF00534107
https://doi.org/10.1007/BF00534107
https://doi.org/10.1007/BF00534107
https://doi.org/10.1007/s004400100186
https://doi.org/10.1007/s004400100186
https://doi.org/10.1007/s004400100186
https://arxiv.org/abs/1901.09257
https://arxiv.org/abs/1901.09257
https://arxiv.org/abs/1901.09257
https://doi.org/10.1109/ICDMW58026.2022.00039
https://doi.org/10.1007/s12532-023-00239-3
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602
https://github.com/hofmannmartin/SphericalHarmonicExpansions.jl
https://github.com/hofmannmartin/SphericalHarmonicExpansions.jl
https://pretalx.com/juliacon-2022/talk/TRFSJY/

Bibliography 33

[27] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. isbn: 1441412697.

[28] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Introduction
	Problem Statement
	Experiments & Methods
	Current Sequence Optimization
	Numerical Setup
	Implementation
	Analysis

	Results
	Numerical Setup
	Current Sequence Optimization

	Discussion & Outlook
	Appendix

