Bachelor thesis

Philip Mark Suskin

Development of an Algorithmic Estimation
of a Good Signal-to-Noise Ratio Threshold
for Reconstruction in Magnetic Particle
Imaging

November 9, 2022

supervised by:
Prof. Dr.-Ing. Tobias Knopp
Dr. rer. nat. Martin Hofmann

Hamburg University of Technology University Medical Center Hamburg-Eppendorf
Institute for Biomedical Imaging Section for Biomedical Imaging
SchwarzenbergstraBBe 95 MartinistraBe 52

21073 Hamburg 20246 Hamburg



Ich versichere an Eides statt, die vorliegende Arbeit selbststindig und nur unter Benutzung
der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Hamburg, den 07.11.2022



Contents

Introduction 4
Problem Statement 7
Experiments & Methods 9
3.1 Datautilized foranalysis . . . . ... ... ... ... ... .. 9
3.2  Human SNR threshold picks . . . . . ... ... .. ... ......... 10
3.3 Algorithmic SNR threshold searches . . . . . .. ... ... ........ 11
Results 16
4.1 Human SNR threshold picks . . . . ... ... ... ... ......... 16
4.2  Algorithmic SNR threshold searches . . . . . .. ... ... ... ..... 16
Discussion 24
Conclusion 26
Appendix 28



Introduction

Magnetic particle imaging (MPI) is a tomographic medical imaging method [1] based on
the determination of iron oxide nanoparticle concentration. As such, MP1 is a tracer-based
imaging method. A comparison to other prominent imaging modalities is visualized in table
1.1[2].

CT MRI PET SPECT MPI
spatial resolution 0.5 mm 1 mm 4 mm 10 mm <1 mm
acquisition time  1s Is-1h 1min 1 min <0.1s
sensitivity low low high high high
quantifiability yes no yes yes yes
harmfulness X-ray heating f/y radiation v radiation heating

Table 1.1: Quantitative comparison of different imaging modalities

MPI imaging comprises two key components: signal acquisition and signal reconstruction.

Signal acquisition is conducted by exciting iron oxide nanoparticles. This is done using
send coils that apply a time-dependent external magnetic field. Together with a selection
field, the signals generated by excitation provide a spatial encoding of the local nanoparticle
concentration and are acquired via receive coils which measure the magnetic flux density.
The selection field is necessary to assign the emitted particle signals to local concentrations
and is implemented via a static magnetic field with a single field free point (FFP), for which
the field vector is zero.

After signal acquisition, the resulting spatial encoding is reconstructed into a tomogram.
This is done by solving an ill-posed inverse problem based on the following linear system of
equations:

Sc=u+e, (1.1)
where § € CK*M is the system matrix, ¢ € RY is the particle concentration vector, u € CX is

the measurement vector, and € € CX is a noise component [3]. A solution is generally found
by solving the resulting least squares problem:

. 2
argmin ||S¢ — w05, (1.2)
CeRYM
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where u,,.,; denotes the raw measurement vector into which the noise component is integrated.
Since the linear system is ill conditioned, however, regularization is implemented through
three core techniques that aim to penalize non-plausible solutions in addition to minimizing
the residual Sc¢ — u,,,045.

One regularization technique is Tikhonov regularization, which utilizes a penalization term
llc|l3 scaled by a regularization constant A € R,. This extends the least squares problem to
the following:

. 2 2
argmin ||S¢ — Uyeqsll; + Allell5. (1.3)
CeRYM

Though it reduces noise, Tikhonov regularization can lead to decreases in spatial resolution
depending on the value for A.

Another technique involves specifying the number of iterations i executed by iterative solvers.
While the accuracy of the least squares solution initially improves as the number of iterations
increases, excessive iterations cause the solution to be fitted to the noise. Iterative solvers
such as the Kaczmarz algorithm are implemented in Julia [4], a programming language
designed for numerical and scientific computing, by the MPIReco package [5]. A typical
reconstruction that uses three regularization techniques is illustrated with the following
high-level reconstruction call:

reconstruction (£fnSF, fnMeas; SNRThresh = 2.5,
lambda = 0.001, iterations = 3)

The third regularization technique, which is the focus of this thesis, is the implementation of
an SNR threshold ® in order to remove rows (frequency components) below a certain SNR
from the linear system. More formally, this means that original index set Ix, = {1,2, ..., Ko}
containing all frequency components is reduced to the index set Ix, = {k € I, | SNR(k) > ©}.
This modifies the problem to the following:

. C ~ 2 2
argmin [|Se¢ — Weqs 0ll; + Allcll3, (1.4)
CeRY

where Sg € CKeXM gpd neas.0 € CKe are the modified system matrix and measurement vector,
respectively, and K¢ = |Ig,| is the cardinality of the modified index set. While the exclusion
of frequency components through an increasing SNR threshold reduces noise in the solution,
the spatial resolution is also reduced, which can lead to blurring for large enough thresholds.

The influence of the SNR threshold in the context of respective frequency components [6] is
visualized graphically for a minimum frequency of 80 kHz in figure 1.1. Note that a minimum
frequency shifts the frequency component index sets, such that an index set Ix = {1,2, ..., K}
implicitly starts at the minimum frequency.
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SNR by frequency of point phantom system matrix with illustrative SNR threshold
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Figure 1.1: Visualization of the effect of the SNR threshold on frequency components

The impact of the exclusion of frequency components through the SNR threshold is further
illustrated in figure 1.2, in which the number of remaining frequency components is plotted
as a function of the SNR threshold for two system matrices. It can be observed that fre-
quency component count has a non-linear relationship to SNR threshold. As such, shifts in
the SNR threshold result in non-linear changes in the spatial resolution of reconstructions.
Instead, changes in the spatial resolution of reconstructions depend on the SNR threshold in
logarithmic fashion.
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Figure 1.2: Relationship between frequency component count and SNR threshold

Since the ideal SNR threshold has been chosen by hand up until this point, an algorithmic
selection is a desirable improvement to the reconstruction process.



Problem Statement

The innate human ability to assess the quality of an image without the knowledge of its
exact contents is one that is difficult to model computationally. Problems of this kind fall
under the category of NRIQA (non-reference image quality assessment), for which there
exists a wide range of metrics with emphases on varying graphical attributes [7]. A quality
assessment metric tailored to MPI reconstructions should, more specifically, emphasize
penalizing distortion, particularly noise and blur. Additionally, instead of calculating a
standardized score for overall image quality, the metric only has to generate scores which
have a well-defined ordinal relationship to the scores of other reconstructions for a specific
measurement at various SNR thresholds.

A set of 10 reconstructions of a point phantom measurement at an iron oxide concentration of
6.25 mmol/L (more formally introduced in section 3.1) generated at logarithmically equidistant
SNR thresholds can be found in figure 2.1. The reconstructions are sorted left-to-right then
top-to-bottom by the SNR threshold used for reconstruction and are normalized via scaling
by the reciprocal of the maximum pixel brightness. They are presented using the viridis
colormap.

Figure 2.1: Grid of 10 normalized reconstructions of point phantom at concentration of 6.25 mmol/L

This set of reconstructions illustrates the transition from noisy to blurry reconstructions as
the SNR threshold increases. An additional set of reconstructions of the same point phantom

measurement, this time at an iron oxide concentration of 0.2 mmol/L, is displayed in figure
2.2.
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Figure 2.2: Grid of 10 normalized reconstructions of point phantom at concentration of 0.2 mmol/L

This set of reconstructions, while also exhibiting a transition from noisy to blurry reconstruc-
tions, demonstrates that this transition is not uniform across different MPI measurements.
Thus, there exists no single SNR threshold capable of generating the visually optimal recon-
struction for every measurement.

Nevertheless, in both sets of reconstructions, and as a common theme throughout various
measurements, a respective optimum can be found between noisy reconstructions at low SNR
thresholds and blurry reconstructions at high SNR thresholds. Designing a metric that scores
reconstructions according to this kind of observation and devising an algorithm that finds the
consequent optimal SNR threshold for reconstruction as reliably and as efficiently as possible
encapsulates the problem discussed in this thesis.



Experiments & Methods

Experiments were conducted on various MPI measurements in order to find a suitable algo-
rithm for the estimation of an optimal SNR threshold with respect to reconstruction quality.
The algorithm should comprise two modular components, namely a quality assessment metric
and an optimization algorithm, both of which are analyzed on their performance and validated
by qualified human reference.

3.1 Data utilized for analysis

In order to establish a basis for analysis, a composition of various phantom measurements
from two datasets was employed.

The first dataset involves a point phantom with various iron oxide concentrations [8]. The
point phantom consists of a sphere of 2.4 mm diameter which contains tracer material with
variable iron oxide concentration, starting at 400 mmol/L with dilutions by a factor of 2
for subsequent measurements until reaching a concentration of 0.2 mmol/L, totaling 12
measurements. For each measurement, a 21 X 21 pixel 2-dimensional phantom resulting
from slicing the corresponding 21 X 21 x 24 voxel reconstruction was used for analysis. The
slice was taken from the xy plane by taking the brightest pixel along the the z axis! for each
coordinate in the plane.

The other dataset stems from OpenMPIData [9]. Therein are measurements for three 3-
dimensional phantoms, denoted as concentration, resolution, and shape phantoms respectively.
The three phantoms are displayed in figure 3.1. Slices were taken from 37 x 37 x 37 voxel
reconstructions of these phantoms to form 37 x 37 pixel 2-dimensional phantoms to use for
analysis.

The concentration phantom consists of eight cubes of 8 uL. volume that form the vertices of a
rectangular prism. Adjacent cubes are spaced 12 mm apart? within the xy plane and 6 mm
apart along the z axis. Each cube contains a different iron oxide concentration, starting at
100 mmol/L with dilutions by a factor of 1.5 for subsequent cubes.

'In the interval from 7 to 9.
2Distance from center to center.
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(a) Concentration (b) Resolution (c) Shape

Figure 3.1: OpenMPIData phantoms

A numbered CAD sketch for the concentration phantom is o
displayed to the right, with the corresponding concentrations P — >
from 1 to 8 as follows: [44.4, 100, 29.6, 8.77, 19.7, 66.6, 13.1, 'l 1
5.85]. Six 2-dimensional phantoms resulting from slices of the R

|
reconstructed concentration phantom were used for analysis. P —x 7
Two slices were taken from each principal plane, i.e. the xy, xz, 'ul e --u|'|
and yz planes, with one slice positioned at 1/3 of the depth of I "Fl”} ?J- —‘|'5 !
the remaining axis and the other positioned at 2/3 of the depth '.I 'il . 'llT '|I
of the remaining axis. III-:' _n_ﬂ&:p'_ﬂ E’l}%ﬁ :'I'.
The resolution phantom consists of 5 thin cylindrical tubes, e e ] .

each with iron oxide concentrations of 50 mmol/L. The tubes e g

stem from a common origin and diverge from each other at Figure 3.2: Conc. CAD
varying angles within the xy and yz plane (20-30° in the xy plane and 10-15° in the yz plane).
Three 2-dimensional phantoms resulting from slices of the reconstructed resolution phantom

were used for analysis. One slice was taken from each principal plane by slicing at 1/2 of the
depth of the remaining axis.

The shape phantom consists of a cone of 683.9 uL. volume with an iron oxide concentration
of 50 mmol/L. The cone has a slightly elliptical base and an apex angle of approximately 10°
in the xy plane. Three 2-dimensional phantoms resulting from slices of the reconstructed
shape phantom were used for analysis. One slice was taken from each principal plane by
taking the brightest pixel along the remaining axis for each coordinate in the plane.

3.2 Human SNR threshold picks

Since image quality is subjective at its core, human quality assessments were generated by
choosing optima out of sets of reconstructions. Specifically, visually optimal reconstructions
were chosen from sets of 10 normalized reconstructions per phantom, for which the SNR



Experiments & Methods 11

thresholds used for reconstruction are logarithmically equidistant across the interval [1, ©,],
where ©; is defined as the SNR threshold for which the respective system matrix has exactly
one frequency component. Two such sets have previously been presented in figures 2.1 and
2.2.

Picks were conducted independently by 10 volunteers of the IBI (Institute for Biomedical
Imaging). They serve as a reference to validate valuations of metric quality and algorithm
performance. A complete collection of all reconstruction grids from which picks were
conducted is located in the appendix under figures 7.1 and 7.2, with the corresponding table
of the picks in table 7.3.

3.3 Algorithmic SNR threshold searches

The first step toward formulating a suitable algorithm for finding the optimal SNR threshold in
terms of reconstruction quality involves establishing a quality assessment metric that penalizes
noise and blur. Functionally, this means that the metric generates monotonic functions when
plotted against degree of image distortion while applying increasing levels of noise and blur
individually. Both functions have identical monotonicity to each other (either increasing or
decreasing) and ideally have slopes far from zero, as this simplifies the resulting optimization
problem.

Once a metric has been established, an algorithm to solve the resulting optimization problem
must be devised. The optimization problem aims to maximize an objective function defined by
the proposed quality assessment metric as a function of the SNR threshold used to reconstruct
the images that the metric is applied to. Neither the shape nor the derivative of the objective
function is known. As such, a derivative-free optimization algorithm is required to determine
the optimal SNR threshold with respect to reconstruction quality. All explicitly defined
reconstruction parameters used during analysis (aside from the SNR threshold) are listed by
phantom in table 7.1 in the appendix.

3.3.1 Quality assessment metric

In order to determine a metric tailored to the quality assessment of reconstructed MPI images,
multiple regularization norms were tested on their responses to blur and noise in images of
various artificial phantoms. The norms evaluated include L1, L2, and TV (total variation).
They each have specific definitions for application to images [10]. For consistency, all images
to which the norms are applied are normalized discrete grayscale images, with normalization
implemented via scaling by the reciprocal of the maximum pixel brightness.
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Applied to a discrete grayscale image I of size M x N pixels, where I(m,n) denotes the
brightness of the pixel in the m-th row and n-th column, the norms are defined as follows:

M N
LI =Y Y lHm.n)
m=1 n=1

M N

L2(I) = Z 1(m,n)?
=1

m=1 n=

M-1 N M N-1

(3.1)

(3.2)

TV(I) = Z le(m, n)—I(m+1,n)| + Z le(m, 1) = Im.n + 1) 3.3)

m=1 n=1 m=1

Distortion curves were generated by plotting each
norm as a function of the SSIM? (structural similarty
index) between a distorted image and the original.
The images used for plotting were generated by hand-
drawing phantoms on a 300 x 300 pixel canvas* and
scaling the canvas down to a 30 x 30 image using
linear interpolation. Blur was applied to the images
via a gaussian kernel sized between O and 3 at inter-
vals of 0.1. Noise was applied via absolute-valued
AWGN (additive white Gaussian nosie) with a stan-
dard deviation between 0 and 0.3 at intervals of 0.01.
An example of a hand-drawn phantom is displayed to
the right, and the corresponding distortion curves, in

n=1

Figure 3.3: Trident phantom

which each norm is independently normalized between 0 and 1, are shown in figures 3.4 and
3.5. In addition, the application of presented distortion methods to this phantom is visualized

in figure 3.6.

Distortion curves were generated for a wide array of hand-drawn phantoms with various
graphical features in order to investigate potential trends in shared monotonicity for each

norm.

3PSNR and RMSE were also used as measures of image distortion and yielded practically identical results

regarding monotonicity.

“Phantoms were drawn on an initially black canvas by filling in white circles with a radius of 6 pixels wherever

the mouse is dragged.
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Metric responses to blur applied by gaussian kernel
sized between 0 and 3 at intervals of 0.1
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Figure 3.4: Blur curve of trident phantom

Metric responses to noise applied by absolute-valued AWGN
(additive white Gaussian nosie) with standard deviation
between 0 and 0.3 at intervals of 0.01
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Figure 3.5: Noise curve of trident phantom
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.
1

Figure 3.6: Blur (top row) applied via gaussian kernel between O and 3 at intervals of 0.6. Noise

(bottom row) applied via absolute-valued AWGN with standard deviation between 0 and
0.3 at intervals of 0.06

3.3.2 Optimization algorithm

To determine a suitable optimization algorithm for finding SNR thresholds that maximize
reconstruction quality, LIPO, a derivative-free global optimization algorithm based on the
global optimization of Lipschitz functions [11], and grid search were analyzed on their ability
to find optima with constraints on the number (and cost) of function evaluations.

Since the underlying reconstruction quality as a function of SNR threshold is not known, the
maximum found in a 100 point grid search was used as the ground truth, i.e. the assumed
global maximum of the function, for each respective phantom.

LIPO was chosen for analysis due to its particularly good performance for few function evalua-
tions and its focus on finding the tallest peak of the objective function rather than convergence
along this peak [12]. These properties align with the optimization of reconstruction quality,
since each function evaluation involves a reconstruction and is thereby expensive in terms of
time and resources, and since high precision with respect to the exact value of the optimal
SNR threshold is not as important as finding an optimum in its vicinity, as slight deviations
in the SNR threshold result in negligible differences in image quality.

In order to visualize LIPO’s performance for a limited number of function evaluations,
its iterative search path was logged for different frequency component budgets. Frequency
component budgets are implemented into LIPO as stopping conditions, which halt the search if
the running sum of frequency components encountered in previously executed reconstructions
would exceed the budget if the next reconstruction were to be executed. Because grid search
acts as a baseline optimization algorithm, budgets were defined as the sums of frequency
components in 5, 10, 15, and 20 log-scaled grid searches. This way, LIPO can be compared
to grid search for a variety of budgets. The budgets are listed in table 7.2 in the appendix.

Comparisons were conducted by analyzing the deviation of LIPO’s prevailing optimal SNR
threshold from the true optimum for each iteration and comparing these deviations to those
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of the grid searches, with emphasis on the relevant budgets. Deviations were quantified using
a geometric norm. For an optimization outcome, i.e. the SNR threshold of the result of
optimization, ®,,, and a true optimal SNR threshold 0,,,., the geometric norm is defined as
follows:

®0ut

5=
®N‘M€

(3.4)

LIPO’s optimization outcomes themselves were also analyzed for each budget in order to
visualize LIPO’s performance in the context of its respective objective function.



Results

4.1 Human SNR threshold picks

Due to differing priorities regarding graphical attributes of images (i.e., emphasis on high
resolution or on minimal noise), a certain degree of variance exists within the picks of the
volunteers for each set of reconstructions. The picks recorded for each reconstruction set
have been condensed to illustrate general tendencies and variance in figure 4.1. In the case
of the point phantom reconstruction sets, it can be observed that picks shift toward higher
SNR thresholds as the iron oxide concentration decreases. However, for the OpenMPIData
reconstruction sets, picks generally center around similar low SNR thresholds.

4.2 Algorithmic SNR threshold searches

4.2.1 Quality assessment metric

Analyzing large numbers of hand-drawn phantoms for trends regarding shared monotonicity
in distortion curves for each metric showed that, for the majority of phantoms, L1 is monoton-
ically increasing for both noise and blur. For a subset of phantoms, L2 is also monotonically
increasing for both forms of distortion, but it is clear from the results that L2 is, at best,
equally as good as L1. In many cases, L2 will “curl up” for low levels of distortion, thereby
disrupting monotonicity. TV generally generates the opposite monotonicity for noise as it
does for blur, with the blur curve being monotonically decreasing and the noise curve being
monotonically increasing. An instance of each of these general observations can be seen in
the distortion curves of the previously introduced trident phantom in figures 3.4 and 3.5.

Exceptions to the usual shared monotonicity generated by L1 were found in two classes
of phantoms, namely scattered non-sparse phantoms and spacious dense phantoms.
For phantoms of either of these classes, the L1 norm fails to generate satisfactory shared
monotonicity for the blur and noise curves.

16
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Tron oxide concentration (mmol/L)
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Human picks from sets of 10 point phantom reconstructions
generated at logarithmically equidistant SNR, thresholds
for 12 logarithmically decreasing concentrations
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Figure 4.1: Overview of human picks from sets of reconstructions
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A model phantom from the scattered non-sparse class

{
.’

is displayed to the right and the corresponding distor- R %
tion curves are displayed in figures 4.3 and 4.4. It is 5 ‘: by ;, "q Pl -
important to note that, in this case, the noise curves t - ¥l 4 . ' AP v
of each norm only exhibit SSIM values in the interval L ].4 < r A - ll
[0.9, 1], and that, as a result, the dip in the noise curve = b.' - : oW :;
for each metric at an SSIM of approximately 0.999, . ; o ’ . : ; ~
while disruptive of monotonicity, is not particularly L m LA A .
problematic, since an image with such high SSIM is w ¥ WR A ~
optically nearly identical to the original image. The l ‘ “rAds TLYATr Y,
flatness of the L1 blur curve for SSIM higher than k"’ i - L O\
0.5 indicates that the L1 norm is non-responsive to S e

low/mild blurring. In this case, the relative difference Figure 4.2: Model scattered non-sparse

in the L1 norm between the model phantom blurred phantom

to a 0.38 SSIM! and the original phantom only amounts to approximately 3.36%. Contrarily
to most phantom classes, TV can be observed to generate substantially shared monotonicity.
In addition, the steepness of both TV distortion curves indicate that it is, in contrast to L1,
highly responsive to both noise and blur. These observations demonstrate that the use of TV

instead of L1 is a viable option for scattered non-sparse phantoms.

Metric responses to blur applied by gaussian kernel
sized between 0 and 3 at intervals of 0.1

— L1
— L2
—TV

1 0.9 0.8 0.7 0:6 0.5 0.4 0.3
Degree of distortion (SSIM)

Figure 4.3: Blur curve of scattered non-sparse phantom

I'This level of blurring is achieved with a Gaussian kernel size of 1.

0.2 0.1
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Metric responses to noise applied by absolute-valued AWGN
(additive white Gaussian nosie) with standard deviation
between 0 and 0.3 at intervals of 0.01
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Figure 4.4: Noise curve of scattered non-sparse phantom

A model phantom from the spacious dense class is
displayed to the right and the corresponding distortion
curves are displayed in figures 4.6 and 4.7. For this
phantom, the L1 norm generates curves with opposing
monotonicity, as the noise curve retains essentially
increasing monotonicity and the blur curve generates
decreasing monotonicity. Similar behavior is shared
by L2 and TV, indicating that the qualities of spacious
dense phantoms at various levels of distortion are not
easily assessed by any of the three proposed metrics.

The significance of the results presented in this sec-
tion is contingent on two key assumptions. First,
that the transition from noisy reconstructions at low
SNR thresholds to blurry reconstructions at high SNR
thresholds is relatively “distinct”, such that noise and blur are largely mutually exclusive in
reconstructions and such that, for any measurement, there exists a reconstruction with low
levels of both forms of distortion at some SNR threshold that is in between the SNR thresholds
of reconstructions that are distorted predominantly by differing forms of distortion. Second,
that the hand-drawn linearly downscaled phantoms are representative of real MPI phantoms
and that the noise and blur applied to these phantoms is more or less the same as that found
in MPI reconstructions. As a way to validate the practical reliability of the proposed metrics
for real MPI measurements, the metrics were further used to plot human picks in the context

Figure 4.5: Model spacious dense
phantom



Results 20

of reconstruction quality as a function of SNR threshold. The plots for each MPI phantom
are displayed in figures 7.3 and 7.4 in the appendix. They demonstrate that the metrics shown
in this section to adequately assess the quality of distorted images in theory indeed lead to
optimal SNR thresholds that lie closely to the best picks of human volunteers.

Metric responses to blur applied by gaussian kernel
sized between 0 and 3 at intervals of 0.1

1
0.8
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0l | | | | | | | | | | |
1 095 09 08 08 075 0.7 065 0.6 055 05 045
Degree of distortion (SSIM)
Figure 4.6: Blur curve of spacious dense phantom
Metric responses to noise applied by absolute-valued AWGN
(additive white Gaussian nosie) with standard deviation
between 0 and 0.3 at intervals of 0.01
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Figure 4.7: Noise curve of spacious dense phantom
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4.2.2 Optimization algorithm

Comparison of LIPO and grid search yielded differing results for each phantom. LIPO’s
comparative performance was observed to be heavily tied to the position of the optimal SNR
threshold for reconstruction quality, with higher optimal SNR thresholds leading to lower
optimization outcome deviations for all budgets. This is demonstrated using the point phantom
at an iron oxide concentration of 0.2 mmol/L, which, when using L1 as a quality assessment
metric?, has an optimal SNR threshold of approximately 381.1. Resulting deviations for
LIPO and grid search are depicted in figure 4.8. It can be observed that LIPO’s deviation
already falls below that of the 20 point grid search before it has fully expended the 5 point
grid search budget. A further observation is that deviations don’t worsen for larger budgets.
Since LIPO is deterministic and the order of its search path is not influenced by stopping
conditions, an iterative search path with an increased budget is always a continuation of the
original iterative search path. This, by extension, means that the optimization outcomes of
executions with higher budgets deviate from the true optimum strictly equally to or less than
the outcomes of executions with lower budgets.

LIPO relative error by iteration while searching for optimal
reconstruction in point phantom at iron oxide concentration of 0.2 mmol/L

e — X XXX XXX KRR KRR = 2O exaese
£ L oxx
o r~~—~~"~~"~""""""""""/"/"/"/"/'"/»-so/oro/or/ToTooooomoTToTmmmmmTmmmmmT T
<
g i
% | X LIPO with 5 point grid search budget
g % LIPO with 10 point grid search budget
& - X LIPO with 15 point grid search budget
= X LIPO with 20 point grid search budget
'% s --- Grid search with 5 points
= --- Grid search with 10 points
o)

A --- Grid search with 15 points
Grid search with 20 points
10—1 I X X
| | | | | |
0 5 10 15 20 25 30
[teration

Figure 4.8: LIPO and grid search optimization outcome deviations for point phantom at an iron oxide
concentration of 0.2 mmol/L

In addition to the deviations, LIPO’s optimization outcomes for each budget are illustrated
in figure 4.9. Here it can be observed that LIPO’s optimization outcomes for the 15 and 20
point grid search budget are in fact of higher quality than the ground truth optimum (defined
by the optimum of a 100 point log-scaled grid search, as mentioned in section 3.3.2), with

More precisely, —L.1 is used, so that the objective function is to be maximized.
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the optimization outcomes achieving a quality of approximately -61.59 and the ground truth
optimum amounting only to approximately -62.41.

LIPO optima found in point phantom at iron oxide concentration of 0.2 mmol/L

—60 - | — Quality assessment metric (-L1)

—4— LIPO with 5 point grid search budget
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Figure 4.9: LIPO optimization outcomes by budget for point phantom at an iron oxide concentration
of 0.2 mmol/L

By contrast, LIPO’s comparative performance drops for optimal SNR thresholds near 1.
The OpenMPIData shape phantom sliced on the xy plane, for example, has a maximum at
an SNR threshold of approximately 1.247. The deviations for LIPO and grid search are
depicted in figure 4.10, and positions of LIPO’s optimization outcomes are visualized in
figure 4.11. It is important to note that, for this phantom, TV is used as the quality assessment
metric. This is because, due to the large quantity of noise artifacts integrated into the shape
phantom measurement, the phantom can be categorized as scattered and non-sparse, which has
previously been discussed to warrant the use of TV instead of L1 in section 4.2.1. Contrarily
to the previous phantom, LIPO’s deviation is at least as high as that of a grid search of
identical budget for all proposed budgets.
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LIPO relative error by iteration while searching for optimal
reconstruction in OpenMPIData shape phantom sliced on xy plane
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Figure 4.10: LIPO and grid search optimization outcome deviations for OpenMPIData shape phantom
sliced on xy plane

LIPO optima found in OpenMPIData shape phantom sliced on xy plane
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Figure 4.11: LIPO optimization outcomes by budget for OpenMPIData shape phantom sliced on xy
plane



Discussion

The results attained through analysis provide insight on the viability of an algorithmic esti-
mation of the optimal SNR threshold regarding reconstruction quality. However, there are
caveats which concern parameters of this algorithm.

Since L1 is the most consistently viable metric across all types of phantoms, it represents
a good candidate for a default quality assessment metric. However, classes of phantoms
for which L1, or even all three presented norms, fail to properly assess quality, have been
shown to exist (see section 4.2.1). For this reason, it is important that the quality assessment
metric remain interchangeable and open to improvement. The interchangeability of the
quality assessment metric reveals a distinct advantage that grid search has over iterative
optimization algorithms, namely that, if its reconstructions are cached, it allows for the
retroactive substitution of the quality assessment metric without the need for additional
reconstructions. By contrast, iterative optimization algorithms must be run practically! from
scratch if the quality assessment metric is substituted.

A further point regarding the choice of quality assessment metric pertains to the identification
and distinction of the scattered non-sparse and spacious dense phantom classes introduced in
section 4.2.1. Intuitive approaches based on image processing methods, such as quantification
of gradient and integral values of surface plots [13], are possible, with basic methods yielding
satisfactory assessments of which class, if either, a phantom belongs into. It is important to
note, however, that without prior knowledge of the appearance of the phantom of interest,
the reliability of these methods could be heavily reduced, since there is no guarantee that an
initial reconstruction at a certain SNR threshold is representative of the underlying phantom
and thereby a useful indicator of the phantom class.

Establishing a default frequency component budget is not straight forward, since it depends
heavily on the priorities and resources of the user. The results of the analysis of the optimiza-
tion algorithm indicate that a budget of 1.25 - K, where K|, represents the total number of
frequency components in the system matrix used in reconstruction, constitutes a reasonable
recommendation for most purposes. This recommendation is subject to change, however,
if constraints on the SNR threshold search interval are implemented. Constraints on the
search interval, particularly those that exclude low SNR thresholds, generally lower the budget
necessary to acquire equally good optimization outcomes. If a priori information is known

'Some iterative optimization algorithms, including LIPO, can make use of a priori information about the
objective function such as points on the function to improve the optimization process.
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or assumptions are made regarding the position of the optimal SNR threshold, constraining
the search interval accordingly can be beneficial in terms of resources and/or reconstruction
quality. However, constraints must be used cautiously, as they inherently risk inadvertently
excluding the optimal SNR threshold.

As the results stand, the use of LIPO instead of grid search does not generally appear advanta-
geous. Even disregarding the aforementioned benefit of grid search regarding the retroactive
substitution of the quality assessment metric, LIPO is not a compelling choice, as it fails
to keep up with grid search for optima at low SNR thresholds. For the proposed budgets,
LIPO was observed to only consistently outperform a grid search of corresponding budget
for optimal SNR thresholds roughly above 5. LIPO’s poor performance for optima at low
SNR thresholds is predominantly attributable to its search routine, in which the objective
function is initially sampled before homing in on the maximum. For the proposed budgets,
this initial sampling makes up a significant portion of the budget, leaving LIPO no room
to close in on expensive optima. However, this indicates that for sufficiently large budgets,
LIPO’s comparative performance improves, even for optimal SNR thresholds near 1, since
the cost of initial sampling is not as substantial relative to the entire budget. This claim is
supported by empirical trials using a budget of approximately 5 - K.

Additional improvements to LIPO’s performance could conceivably be made by incorporating
frequency component count as a function of SNR threshold for the system matrix used in
reconstruction (see figure 1.2) into LIPO’s search algorithm, such that LIPO has a priori
information about the cost of objective function evaluations. This could allow LIPO’s search
path to be biased toward high SNR thresholds and initially focus less on precision for low
SNR thresholds, resulting in better optimization outcomes without a change to the budget.
This suggestion notably is theoretically applicable to any iterative optimization algorithm.
The choice of optimization algorithm is not restricted to LIPO or grid search and remains
open to improvement.



Conclusion

Based on the findings in this thesis, an SNR threshold optimization algorithm comprising
parameters for quality assessment metric, optimization algorithm, and frequency component
budget is proposed. The algorithm is designed to estimate an SNR threshold that optimizes
reconstruction quality, thereby alleviating the need for manual selection.
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Appendix

Point phantom iron oxide
concentration (mmol/L) | lambda iterations minFreq frames recChannels numAverages

400 0.0005 3 80,000 301:1300 1:3 1000

200 0.003755 3 80,000 3087:4086 1:3 1000

100 0.01786 3 80,000 5873:6872 1:3 1000

50 0.055835 3 80,000 8658:9657 1:3 1000

25 0.1359 3 80,000 11444:12443 1.3 1000

12.5 0.2815 3 80,000 14229:15228 1:3 1000

6.25 0.5213 3 80,000 17015:18014 1:3 1000

3.12 0.8891 3 80,000 19800:20799 1:3 1000

1.56 1.424 3 80,000 22586:23585 1:3 1000

0.78 2.17 3 80,000 25371:26370 1:3 1000

0.39 3.1774 3 80,000 28157:29156 1:3 1000

0.2 4.5 3 80,000 30942:31941 1:3 1000
OpenMPIData 0.001 3 80,000 1:1000 1:3 1000

Table 7.1: Reconstruction parameters by phantom

Grid search

System matrix

point count OpenMPIData Point phantom
Relative to K, | Absolute | Relative to K, | Absolute
5 1.03 78003 1.1 83258
10 1.26 94989 1.38 104350
15 1.57 118972 1.68 127369
20 1.98 149616 2 151581

Table 7.2: Frequency component budgets by system matrix and points in grid search
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Figure 7.1: Point phantom grids sorted left-to-right then top-to-bottom by iron oxide concentration
from [400, 200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56, 0.78, 0.39, 0.2] mmol/L
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Figure 7.2: OpenMPIData phantom grids sorted left-to-right then top-to-bottom by phantom and slice
from [Conc. Xy[%], Conc. Xy[%], Conc. xz[%], Conc. XZ[%], Conc. yz[%], Conc. yz[%],
Res. xy, Res. xz, Res. yz, Shape xy, Shape xz, Shape yz]
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