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Abstract

Modern advancements in the field of Natural Language Processing, driven pri-
marily by Large Language Models, open the door not only to a plethora of AI-
driven applications, but to the ability to produce such applications at or near the
industry standard without the need for industrial-grade computational resources.
In particular, requirements regarding GPU memory have sunk drastically as a re-
sult of recent advancements. However, it is not always clear what implications
these improvements have for smaller organizations planning to work with Large
Language Models. We review the extent to which consumer-grade hardware is
capable of training language models of varying parameter count and analyze the
performance of resulting models. Furthermore, we share our experience regarding
training methodology and evaluative measures through an intuitive practical use
case.
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1 Introduction

Language models have rapidly made their way into a variety of applications, such as
conversational interfaces, document summarization, sentiment analysis, and many more.
In particular, conversational interfaces have begun to reshape the way humans gather
and manage information. From an institutional perspective, these interfaces could be
implemented to offer clients automated assistance with a plethora of common tasks and
queries specific to the institution’s domain. Implementing an industrial-strength interface
for automated dialog currently involves using Large Language Models, language mod-
els apt to handle the complexity of language-based learning tasks through the substantial
number of parameters in their architecture.

1.1 Large Language Models

Large Language Models (LLMs), in the context of Natural Language Processing (NLP),
are models which process textual data, most commonly implemented using Transform-
ers. Transformers are a neural network architecture developed by Vaswani et al. 2017
aimed at computing contextualized embeddings of tokenized sequences of text, thereby
producing a comprehensive semantic representation of the input. This works using a
mechanism called self-attention.

Early instances of large language models are found in models such as GPT-1 (Radford
and Narasimhan 2018), the first iteration of the Generative Pre-trained Transformers
(GPT) models, developed by OpenAI and released in June 2018. This model began
paving the way for future generative language models. In October of the same year, the
Bidirectional Encoder Representations (BERT) (Devlin et al. 2018) model, developed by
Google, was released. It capitalized on the ability to learn contextual representations
based on context both to the left and to the right of words, thereby achieving high
performance on multiple NLP tasks, such as sentiment analysis and text classification. In
the following years, further GPT iterations were released, yielding GPT-2 (Radford, Wu,
et al. 2019) in February 2019 and GPT-3 (Brown et al. 2020) in June 2020. More recently,
the LLaMA (Touvron, Lavril, et al. 2023) and LLaMA-2 (Touvron, Martin, et al. 2023)
models, developed by Meta AI, were released in February and July 2023, respectively.
These two open-source models exhibit state-of-the-art benchmark performance and are
provided at various parameter counts. As implied by the name, the parameter count
details the number of parameters in the respective model architecture. The LLaMA
models were developed at parameter counts of 7b (7 billion), 13b, 33b, and 65b. The
LLaMA-2 models were developed at parameter counts of 7b, 13b, 34b, and 70b, though
the 34b version has not been publicly released to date. For reference, a 7b model occupies
approx. 13.3 GB of storage, and this parameter-count-to-storage ratio holds for models
of higher parameter count.
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1.1.1 Tokens

Tokens are basic units of text that form the sequences processed by LLMs. They fol-
low a fixed vocabulary, in which each token is assigned a unique integer ID, managed
by a tokenizer. With the help of a tokenizer, raw text can be tokenized by encoding
sub-sequences of text into their respective ids as they are encountered. The simplest to-
kenizers are whitespace tokenizers, which split text by spaces, creating a vocabulary that
consists of all words encountered in the provided text corpora. However, this method
of tokenization can lead to many problems once the vocabulary is established. For ex-
ample, the risk of encountering out-of-vocabulary words is high and requires a colossal
vocabulary to minimize. For this reason, the current standard approach to tokenization
involves Byte-Pair Encoding (BPE), a method that generates a vocabulary consisting of
the subwords that occur most frequently in the reference corpora (Sennrich, Haddow,
and Birch 2015). In order to set up BPE tokenization, the frequency with which each
word occurs in the training data is first established. Following this, a base vocabulary
containing all characters found in these words is generated, whereby the vocabulary en-
tries are called symbols. Symbols are then iteratively merged according to the symbol
pair that occurs most frequently in the original word frequency measurement until the
target vocabulary size is attained. An application of BPE tokenization is provided using
the LLaMA tokenizer on the example sentence “This evaluation serves the analysis of
recorded BDE time tickets.” in Listing 1. This example demonstrates that BPE symbols
can be (and, given sufficient vocabulary size, often are) entire words.

[’This’, ’evaluation’, ’serves’, ’the’, ’analysis’, ’of’, ’recorded’, ’B’, ’DE’, ’time’, ’tick
↪→ ’, ’ets’, ’.’]

Listing 1: BPE tokenization example

Though it depends on the tokenizer, estimates on the token-to-word ratio that can be
expected for general text under BPE amount to around 4 tokens for every 3 words (Petrov
et al. 2023). The ratio achieved by the LLaMA tokenizer on our dataset does not stray
too far from this estimate, sitting at approx. 1.72 tokens per word (instead of 1.3). The
increased ratio on our dataset is arguably explainable by the high frequency of technical
terminology and acronyms occurring in the training samples.

Based on their assigned ID, tokens are one-hot encoded in order to create a vector repre-
sentation suitable for the LLM architecture, with a typical one-hot encoding dimension,
i.e., vocabulary size, on the order of 104 (32000 for LLaMA/LLaMA-2). Subsequently, em-
beddings are formed from these vectors, which aim to establish semantic representations
of tokens at a reduced dimension compared to the one-hot encoding dimension.

1.1.2 Embeddings

In general, embeddings form a lower-dimensional continuous representation out of one-hot
encoded tokens within a designated vocabulary. In contrast to one-hot token encodings,
typical embeddings have a dimension on the order of 103 (4096 for LLaMA-2-7b). In
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an abstract sense, the continuous representation formed by an embedding, which can be
expressed as a vector v = (v1, . . . , vn), infuses, or better, embeds, a semantic description
into its elements vi, though this description is context-free for elementary encoders such as
word2vec (Mikolov et al. 2013). Still, non-contextual embeddings possess valuable prop-
erties and relationships to other embeddings, such as reduced distance1 to semantically
related embeddings in the present vector space. A further property of these embeddings
is their ability to produce linear word analogies (Allen and Hospedales 2019). A linear
word analogy f is an invertible transformation over a set of ordered token pairs S for
which f(v) = w ∧ f−1(w) = v ∀(v,w) ∈ S holds and f has the form v 7→ v + r.
An example commonly referenced in order to exemplify this property is the analogy
vking + (vwoman − vman) ≈ vqueen, where vx is the embedding vector of some token x.
Analogies like these arise in the embedding vector space due to co-occurrence probabili-
ties aligning with the structure of the analogy (Ethayarajh, Duvenaud, and Hirst 2018).
More formally, an analogy “a is to b as c is to d” holds in the respective embedding
vector space if and only if p(w|a)

p(w|b) ≈
p(w|c)
p(w|d) ∀w ∈ T , where T is the token vocabulary and

p(vx|vy) is the co-occurrence probability for the tokens x and y, i.e., the probability that
x is found in the current context window given that y is found in it (Pennington, Socher,
and Manning 2014). Another key insight regarding embeddings is the fact that the dis-
cussed properties do not result from a pre-defined embedding space, but instead arise
inherently as embeddings are learned during training. Embeddings are learned through
a designated embedding layer positioned at the front of the Transformer Architecture,
detailed in Section 1.2.

Despite these important properties, lack of consideration for context in embeddings can
inhibit LLMs from adequately processing linguistic features required to model natural
language. Attention is a mechanism aimed at providing context in addition to embedding
the semantic description of tokens, in order to alleviate this linguistic constraint.

1.1.3 Attention

Attention can be expressed as a functional mapping of a query and a set of key-value
pairs to an output, where these elements are expressible as the vectors q ∈ Rdk , k ∈
Rdk , v ∈ Rdv , respectively (Vaswani et al. 2017, Section 3.2). Specifically, the output
is computed as a weighted sum of the values, where the weight assigned to each value
derives from a compatibility function of the query with the corresponding key. In practice,
attention is computed on sets of queries, keys, and values simultaneously, where the sets
are expressed as the matrices Q ∈ Rn×dk , K ∈ Rn×dk , V ∈ Rn×dv , respectively, with n ∈ N
as the sequence length. An important component of attention is softmax, an activation
function defined on Rn → Rn that transforms output neuron activations into a probability

1Distances between embeddings are generally computed using Euclidean or cosine distance, both of
which exhibit the phenomenon of reduced magnitude between semantically related embeddings.
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distribution over the classification space2, defined as:

softmax(x)i :=
exi

∑n
j=1 e

xj
∈ Rn. (1.1)

The prevailing implementation of attention is Scaled Dot-Product Attention, see (Vaswani
et al. 2017, Equation 1), defined as follows:

Attention(Q,K, V ) := softmax

(
QKT

√
dk

)
V ∈ Rn×dv .

Scaled Dot-Product Attention first computes the scaled product of the queries and keys,
before applying softmax column-wise, after which the result is multiplied by the attention
values. The product of the queries and keys is scaled according to the reciprocal of
the square root of their shared dimension 1√

dk
in order to counteract the potential for

softmax to face vanishing gradients, which can occur when the input to softmax is of large
magnitude. The vanishing gradient problem refers to a phenomenon in back-propagation
in which gradients become extremely small across many consecutive backward passes,
hindering the training process by causing negligible updates to weights, particularly in
early layers. The structure of Scaled Dot-Product Attention is visualized in Figure 1
(Vaswani et al. 2017, Figure 2).

Figure 1: Visualization of Scaled Dot-Product Attention (from Vaswani et al. 2017)

In order to improve efficiency for the repeated computation of the attention function, the
queries, keys, and values are linearly projected h times with learned projections to the

2In the case of LLMs, the softmax function transforms the output activations into a probability
distribution over the corresponding tokenizer vocabulary.

12



dimensions dk, dk, and dv, respectively, instead of computing the attention function once
with d-dimensional vectors, where d is the pre-trained model dimension. This allows for
the parallel execution of the attention function on the projected queries, keys, and values,
yielding dv-dimensional intermediate vectors. These are then concatenated and projected
again, resulting in the final output vectors. This process is called Multi-Head Attention,
see (Vaswani et al. 2017, Section 3.2.2), formally defined as follows:

MultiHeadWQ,WK ,WV ,WO(X, Y ) := Concat(head1, . . . , headh)W
O ∈ Rn×d,

headi := Attention(YWQ
i︸ ︷︷ ︸

Qi

, XWK
i︸ ︷︷ ︸

Ki

, XW V
i︸ ︷︷ ︸

Vi

),

where X ∈ Rn×d and Y ∈ Rn×d are the inputs to the current attention unit, the
learned projections are parameter matrices WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk , W V

i ∈ Rd×dv ,
and WO ∈ Rhdv×d, and Concat(·) denotes column-wise concatenation of matrices. The
inputs X, Y are based on block outputs within the encoder-decoder structure of the
Transformer architecture, presented in more detail in Section 1.2. For self-attention, it
holds that equivalent inputs X = Y representing the previous encoder/decoder block out-
put are passed, whereas for cross-attention, which connects the encoder and decoder in
the Transformer architecture, X forms the output of the last encoder block and Y forms
the output of the previous decoder block (Soltius 2023). The structure of Multi-Head
Attention is visualized in Figure 2 (Soltius 2023).

Figure 2: Visualization of Multi-Head Attention (from Soltius 2023)

The discussed components of the attention mechanism form the basis for the implemen-
tation of the Transformer model architecture.
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1.2 Transformers

The Transformer Architecture is unique in the sense that it relies entirely on self-attention
for the computation of its input and output representations (Vaswani et al. 2017, Sec-
tion 3). As a sequence transduction model, the Transformer comprises an encoder-decoder
structure, where the encoder maps a tokenized input sequence x = (x1, . . . , xn) to a se-
quence of continuous embeddings z = (z1, . . . , zn), and the decoder maps z to an output
sequence y = (y1, . . . , ym), sequentially. The Transformer implements the encoder as
well as the decoder using stacked self-attention and position-wise feed-forward networks
(FFN) (Vaswani et al. 2017, Section 3.3). The FFN is a layer architecture comprising
two learned linear transformations separated by a ReLU activation, see (Vaswani et al.
2017, Equation 2), defined as follows:

FFNW1,W2,b1,b2(x) := max(0, xW1 + b1)W2 + b2 ∈ Rn×d,

where x ∈ Rn×d is an input sequence, W1 ∈ Rd×dFFN and b1 ∈ Rn×dFFN are the weight and
bias, respectively, for the first linear transformation, and W2 ∈ RdFFN×d and b2 ∈ Rn×d

are the weight and bias, respectively, for the second linear transformation.

Additionally, d-dimensional positional encodings are added to the otherwise position-
agnostic embeddings in order to inject information regarding the order of tokens in the
sequence. Both learned and fixed positional encodings are possible implementations and
have been shown to yield similar results (Vaswani et al. 2017, Section 3.5). The positional
encoding method used by the original authors of the Transformer architecture comprises
alternating sine and cosine functions, see (Vaswani et al. 2017, Section 3.5), according to
the following definitions:

PE(pos, 2i) = sin
(
pos/10000

2i
d

)
∈ [−1, 1],

PE(pos, 2i+ 1) = cos
(
pos/10000

2i
d

)
∈ [−1, 1],

where pos represents the positional index of a token and 2i or 2i+ 1 represent the index
along the embedding dimension. Both LLaMA and LLaMA-2 implement rotary position
embedding (RoPE), a method of positional encoding based on rotation matrices (Su et
al. 2021). Instead of adding a term to an embedding, RoPE prepends a matrix factor
Rd

Θ,m ∈ Rd×d to the learned attention projections in order to inject information regarding
the relative position of a token within a given sequence. Here,

Rd
Θ,m =




cosmθ1 − sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 − sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθd/2 − sinmθd/2
0 0 0 0 · · · sinmθd/2 cosmθd/2



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is in the form of a rotation matrix where Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}
andm is the positional index of a token. This method has been shown to exhibit numerous
valuable properties, such as flexibility regarding sequence length and long-term inter-
token decay, i.e., a decreasing inner product of query and key vectors as the absolute
difference in their positional indices increases (Su et al. 2021, Section 3.4.3).

The Transformer Architecture is displayed in Figure 3 (Vaswani et al. 2017, Figure 1).
Within this architecture, the dimension of the feed-forward layers dFFN is typically 4d.
For reference, the pre-trained model employed by the original authors of the Transformer
Architecture possesses dimensions of d = 512, dk = 64, dv = 64, dFFN = 2048, as well as
h = 8 attention heads and encoder/decoder stacks of size N = 6.

Figure 3: Visualization of the Transformer Architecture (from Vaswani et al. 2017)

In practice, encoder-decoder, encoder-only, and decoder-only models are all put to use in
different situations. Encoder-decoder models, such as those within the Marian framework
(Junczys-Dowmunt et al. 2018), aim to generate text that inherently contrasts the input
text, like machine translation. Encoder-only models, such as BERT, focus on providing
contextual word embeddings, which commonly play a large role for downstream classifi-
cation tasks. Decoder-only models, such as the various GPT models, excel at generative
language tasks. We focus on decoder-only models for our work.
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1.3 Training

Training LLMs from scratch is generally performed auto-regressively and demands ex-
traordinary compute and memory capabilities. The auto-regressive training of LLMs is
an unsupervised learning technique which processes tokenized sequences of text extracted
from large corpora by iteratively predicting the token that follows the sequence. In addi-
tion, many LLMs are trained with a subsequent reinforcement learning step in order to
align models with human preferences and/or reduce unwanted bias and implicit toxicity,
which can come in the form of prejudices such as racism and sexism. Reinforcement
learning is an online machine learning technique which trains an agent to form an opti-
mal decision-making policy by interacting with a defined environment, receiving feedback
according to a reward function, and adjusting its behavior in a way that maximizes cu-
mulative rewards. In the context of NLP, reinforcement learning with human feedback
(RLHF) is generally implemented, a type of reinforcement learning in which human eval-
uation of model responses constitutes the reward. To this end, a reward model is trained
on a dataset containing human-annotated rankings of model-generated responses to var-
ious prompts, which is then used to provide feedback to the LLM acting as an agent in
order to train a reinforcement learning policy aligned with human preference.

Due to the substantial number of parameters in an LLM (commonly in the billions) and
number of tokens processed during training (commonly in the trillions), training from
scratch historically leads to CO2 emissions in the 10s or even 100s of tons (Luccioni,
Viguier, and Ligozat 2022) and costs estimated to start at $10 million (Miller 2023). As
a result, this is generally not a feasible option for organizations. Luckily, a variety of open-
source pre-trained LLMs, also called foundation models, are available on platforms such
as Hugging Face (Hugging Face 2016). This provides users with the opportunity to use
these models for inference, i.e., generation of model responses based on passed prompts,
or tailor them to more specific needs through a process called Finetuning.

1.4 Finetuning

Finetuning is a technique within the field of transfer learning which involves adapting a
pre-trained neural network for a particular learning task by training it on a smaller, often
domain-specific dataset. In terms of model parameters, finetuning equates to altering a
pre-trained model weight matrix W0 by some delta matrix ∆W in order to minimize loss
on the defined learning task:

W0 +∆W.

Full Finetuning involves updating all elements of the original weight matrix through
conventional back-propagation. In this case, the original weight matrix in its entirety is
iteratively adjusted by gradient updates:

Wi+1 = Wi +∆Wi.
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Despite the reduced dataset size compared to that when training from scratch, due to the
substantial number of parameters in the large language model architecture, full finetuning
remains very costly and may be over budget for most organizations. This is due, in
particular, to the extreme VRAM consumption (over 100GB even for smaller models)
required for back-propagation (Hu et al. 2021, Section 4.2).

Parameter-Efficient Finetuning (PEFT) aims to attain comparable performance to full
finetuning while using fewer computational resources. In particular, the memory over-
head which must be managed by the GPU as well as the storage of weight matrices is
dramatically reduced. General PEFT approaches involve finetuning only an (external)
subset of weights, while freezing most of the original weights. In this case, the original
weight matrix is iteratively adjusted by gradient updates that affect only a subset of its
elements:

Wi+1 = W0 +∆W (S),

where S denotes the set of parameters that constitute the contents of the structured
matrix for the external weight update ∆W (S).

As a result, saving the finetuned model or checkpoints thereof only requires saving the
smaller subset of weights, since this subset can be added to the pre-trained weight matrix
during inference. In addition, the GPU memory requirement is reduced, since gradients
and gradient updates only need to be computed for non-frozen weights. These improve-
ments make LLM finetuning a more feasible endeavor for all organizations. The resources
we consumed while systematically finetuning models of various parameter count are listed
in Table 1. The average duration is calculated from a set of systematically finetuned
models, detailed in Section 4. The effective costs result from the hourly renting rates on
runpod.io at the time of training. Carbon emission estimates were conducted using the
Machine Learning Impact calculator presented in (Lacoste et al. 2019).

Parameter Count GPU Avg. Duration Effective Costs CO2 Emissions
7b RTX A4500 7:51:06.36 $2.83 1.12 kg
13b RTX A4500 13:33:40.80 $4.88 1.89 kg
70b A100 1 day, 6:55:46.06 $61.55 4.73 kg

Table 1: Resource consumption for various finetuned models

Initial implementations of PEFT approaches involve freezing all pre-trained model weights
and training only a task-specific finetuning head which is appended to the model (Houlsby
et al. 2019). Since the finetuning head consists purely of additional layer(s) positioned
at the back of the adapted model, this approach fails to learn through adjustments to
internal model representations, instead providing access only to the output embedding.
An extension to these implementations involves training multiple intermediate layers,
called adapter layers, injected throughout the pre-trained model architecture. This ap-
proach yields promising results regarding model performance, though it leads to increased
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latency during inference and lowered computational efficiency in general due to the signif-
icant increase in total model parameters (Houlsby et al. 2019, Section 3.2). Yet another
advancement to PEFT approaches, though specific to language models, called Prefix-
Tuning, developed by researchers at Stanford, focuses on the optimization of input vec-
tors fed into a pre-trained model instead of adjusting the model architecture through
conventional parameter-tuning. More specifically, prefix-tuning prepends supplementary
task-specific context to each input vector, which is optimized through a training proce-
dure in which all pre-trained model weights remain frozen, in order to steer the model to
desirable outputs (Li and Liang 2021). Despite demonstrating comparable performance
to adapter-tuning methods, prefix-tuning is limited in its capabilities by its sole focus
on input embeddings. We focus on more recent implementations of PEFT approaches
that aim to alleviate the discussed constraints and offer additional benefits for finetun-
ing, namely LoRA and QLoRA, two state-of-the-art techniques which take advantage
of various properties to reduce compute.

1.4.1 LoRA

Low-Rank Adaptation (LoRA) of LLMs, developed by Hu et al. 2021, proposes a way to
decompose the gradient update matrix into lower-rank matrix factors named adapters,
thereby reducing the memory reserved for back-propagation. This concept hinges on
the discovery that the parameters of LLMs reside in a low intrinsic dimension (Agha-
janyan, Zettlemoyer, and Gupta 2020), thus their updates ∆W can be approximated
with low-rank matrix decompositions (Hu et al. 2021, Section 1). Adapters are a con-
cept originally proposed in the form of an additional set of lower-dimensional trainable
layers positioned between the original layers of the pre-trained model (Houlsby et al.
2019). LoRA avoids the inference latency associated with adding these additional layers
by merging the learned weights with the pre-trained weights during inference (Hu et al.
2021, Section 6).

At its core, LoRA capitalizes on the properties of the Singular Value Decomposition
(SVD). The SVD factorizes a matrix M ∈ Cm×n into matrix factors U ∈ Cm×m, Σ ∈
Rm×n

≥0 , and V ∗ ∈ Cn×n, containing left-singular vectors, singular values (along the diago-
nal), and right-singular vectors of M , respectively, where U , V are orthonormal matrices
(Golub and Van Loan 2013, Chapter 2.4). This decomposition allows for a method
called truncation, in which the matrix factors are condensed into the forms Ut ∈ Cm×t,
Σt ∈ Rt×t

>0 , and V ∗
t ∈ Ct×n, where the t largest (non-zero) singular values and corre-

sponding singular vectors are used. The truncated SVD provides an optimal low-rank
approximation of the original matrix M and thereby provides a conceptual foundation
for the low-rank approximations of adapters respective to pre-trained weight matrices.
In the case of LoRA, a pre-trained weight matrix W ∈ Rd×d designated to be adapted
is not decomposed and truncated, but is instead a term to which the product BA of the
low-rank matrix factors A ∈ Rr×d and B ∈ Rd×r is added, where r ≪ d is the reduced
rank, A is randomly initialized, and B is zero initialized (Hu et al. 2021, Section 4.1).
B is chosen to be zero-initialized in order to ensure that the weight update BA is 0
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initially, i.e., finetuning commences with total parameters equivalent to the pre-trained
model weights. The discussed LoRA principles are depicted in Figure 4 (Hu et al. 2021,
Figure 1). In this figure, A is represented by a normal distribution N (0, σ2) with mean
0 and standard deviation σ. However, we employ a different method for the random
initialization of A based on a zero-centered uniform distribution U(−a, a) on the interval
[−a, a], detailed in Section 2.3.

Figure 4: Visualization of LoRA Adapters (from Hu et al. 2021)

Due to the reduced rank of the matrix factors A and B, the number of trainable pa-
rameters per weight matrix W is lowered from d2 to 2rd, which is significantly lower for
r ≪ d. LoRA aims to leverage the reduced dimensionality of the adapter matrices in a
parameter-efficient approach to finetuning. Though this approach is agnostic to training
objective, its implementation can be exemplified for the language modeling problem (Hu
et al. 2021, Section 2). Given a pre-trained auto-regressive language model PΦ(y|x) pa-
rameterized by parameters Φ and a downstream task represented by a training dataset
of context-target pairs Z = {(xi, yi)}i=1,...,N , where xi and yi are tokenized sequences,
full finetuning initializes the model to pre-trained weights Φ0 and subsequently updates
the weights to Φ0+∆Φ by repeatedly following the gradient to maximize the conditional
language modeling objective, defined as follows:

ObjFull = max
Φ

∑

(x,y)∈Z

|yt|∑

t=1

logPΦ(yt|x, y<t), (1.2)

where |yt| is the length, i.e., number of tokens, of the t-th tokenized output sequence yt.
The equation for the maximization of the conditional language modeling objective stems
from the application of cross-entropy loss. Cross-entropy loss is a loss function designed
for learning tasks in which the output comes in the form of a probability distribution
which denotes the likelihood of each label within a set of possible labels, defined as:

C(p) := −yi,j log xi,j = − logP (yi,j) ∈ [0,∞), (1.3)
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where p = (xi,j, yi,j) is an output pair in which xi,j is the model output and yi,j is the
true value. Since the true value yi,j is a one-hot encoded vector corresponding to the
index of the correct label, the cross-entropy error can alternatively be described in terms
of the probability assigned to the correct label by the model output xi,j, also shown
in (1.3). Finally, the conditional language modeling objective, effectively cross-entropy
loss on next-token prediction, involves minimizing the cross-entropy loss, which can be
equivalently described as maximizing its additive inverse, explaining the formulation of
(1.2).

LoRA proposes an approach that encodes the parameter increment ∆Φ = ∆Φ(Θ) by a
small subset of parameters Θ with |Θ| ≪ |Φ0|, where |Θ| is the cardinality of the set of
trainable parameters and |Φ| is the cardinality of the set of pre-trained parameters. This
modifies the original optimization problem in (1.2) to one over Θ:

ObjLoRA = max
Θ

∑

(x,y)∈Z

|yt|∑

t=1

logPΦ0+∆Φ(Θ)(yt|x, y<t).

Given a pre-defined set of weight matrices to adapt, referred to as modules, one can
calculate the percentage reduction in trainable parameters induced by LoRA finetuning
by applying the following calculation:

ftrainable =
no. trainable params

no. pre-trained params
=
|Θ|
|Φ| = 2

L̂LoRA

L̂total

r

d
∈ [0, 1],

|Θ| = 2× L̂LoRA × d× r,
|Φ| = L̂total × d2,

where L̂LoRA, L̂total are the number of LoRA/total modules, respectively, d is the pre-
trained model dimension, and r is the reduced rank. As an example, LoRA finetuning
on LLaMA-2-7b, for which L̂total = 7 and d = 4096 hold, using r = 4 and L̂LoRA = 2, the
fraction of trainable parameters is as low as ftrainable =

1
1792
≈ 0.056%.

LoRA has been shown to exhibit multiple advantages over full finetuning (Hu et al.
2021, Section 5.1). Aside from the benefits regarding memory allocation during back-
propagation, LoRA saves finetuned adapters with much lower storage requirements than
fully-finetuned weights. Thus, deploying multiple instances of finetuned models only
requires a single instance of the pre-trained model weights alongside the respective fine-
tuned adapters. LoRA also produces no additional latency during inference. Regular
adapter layers have to be processed sequentially, which bottlenecks the parallelism neural
networks rely on for low latency. LoRA instead only adds a term to the weights in the
forward pass, which can then be calculated like normal. Furthermore, LoRA doesn’t lead
to a reduction in input sequence length. Since LoRA categorically affects weight update
matrices, it has no bearing on the input, so the sequence length can remain the same.
The benefits of LoRA were further observed practically (Hu et al. 2021, Section 4.2):
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finetuning GPT-3 175b with Adam lead to a drop in VRAM consumption from 1.2TB
to 350GB, reduced checkpoint size from 350GB to 35MB, and increased training speed
by 25%. Finally, empirical trials showed that adapting only the attention weights, par-
ticularly Wq (query) and Wv (value), with a reduced rank r = 4 yields near-optimal
performance while significantly reducing compute.

1.4.2 QLoRA

Quantized Low-Rank Adaptation (QLoRA), developed by Dettmers, Pagnoni, et al. 2023,
is an extension of LoRA, which further reduces the memory overhead for finetuning. This
is achieved by three core innovations: 4-bit NormalFloat (NF4), Double Quantization,
and Paged Optimizers (Dettmers, Pagnoni, et al. 2023, Section 1).

In order to understand the motivation for QLoRA, as well as the computational benefit it
provides, an understanding of the relevant numeric datatypes, including those proposed
by the IEEE 754 standard (“IEEE Standard for Binary Floating-Point Arithmetic” 1985),
must be established. To this end, an overview of these datatypes is presented in Table 2.
The table provides a comparison of the number of bits reserved for each of portion of the
floating point format. The green cells highlight the fact that the 16-bit Brain Float (BF16)
shares the same amount of exponent bits as a regular3 32-bit float (FP32), instead of the
5 exponent bits in a regular 16-bit float (FP16). By extension, the number of precision
bits in a 16-bit Brain Float amounts only to 7 instead of 10. As such, the Brain Float
datatype is equipped to handle a large range of values, reducing susceptibility to overflow,
and allows for more efficient computation, coming at the cost of reduced precision.

Format
No. of bits Range of values

sign exp mantissa min. max.

FP32 1 8 23 2−126 ≈ 1.18× 10−38 (1− 2−24)2128 ≈ 3.4× 1038

BF16 1 8 7 2−126 ≈ 1.18× 10−38 (1− 2−8)2128 ≈ 3.39× 1038

FP16 1 5 10 2−14 ≈ 6.1× 10−5 (1− 2−11)216 = 65504

Table 2: Overview of relevant computer number formats

The next concept we discuss is quantization. In general, quantization refers to the con-
cept of re-assigning certain values of a larger, i.e., more memory-consuming, datatype to
values of a smaller datatype. Values are re-assigned according to the quantization bin
they fall into when normalized. Given the values w1, . . . , wn, normalization is performed
by dividing each value by the quantization constant, which is the absmax of the values
m = maxi |wi|. Subsequently, re-assignment according to respective quantization bin is
assessed by mapping each normalized value wi/m to the nearest value of the quantization
datatype qj and storing the index ci = argminj|qj−wi/m| of the nearest value within the
quantization datatype. The information that is lost due to quantized values deviating

3Here, a “regular” k-bit float refers to the k-bit IEEE 754 floating point format.
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from their respective original values is referred to as quantization error and is generally
sought to be minimized. An example of quantization and resulting quantization error is
presented for an example 2-bit datatype with arbitrary input values in Listing 2. From
this example, the importance of matching the quantization datatype distribution to the
input distribution for minimizing quantization error becomes clear, as the quantization
datatype in the example is an asymmetric datatype skewed toward high values, making
it unsuitable for typical distributions, such as uniform and normal distributions. The
inverse operation to quantization, dequantization, is applied using the quantization con-
stant calculated during quantization, as a result of which the quantization constant must
be stored.

Quantization datatype values: {=1, 0.5, 0.7, 1}
Input values: {10, =1, 3, 8, =9}

1. Normalize input with absmax = 10: {10,−1, 3, 8,−9} → {1,−0.1, 0.3, 0.8,−0.9}
2. Assign each input to nearest value in quantization datatype:

↪→ {1,−0.1, 0.3, 0.8,−0.9} → {1, 0.5, 0.5, 0.7,−1}

Quantization error calculated by the absolute difference between normalized input and
↪→ quantization result: {|1=1|, |=0.1=0.5|, |0.3=0.5|, |0.8=0.7|, |=0.9=(=1)|} =
↪→ {0, 0.6, 0.2, 0.1, 0.1}

Dequantization is conducted by denormalizing with absmax of original input values:
↪→ {1, 0.5, 0.5, 0.7,−1} → {10, 5, 5, 7,−10}

Listing 2: Quantization on example 2-bit datatype

A conceptual extension of quantization lies in block-wise quantization, which divides the
input into smaller, independently quantized blocks (Dettmers, Lewis, et al. 2021). This
makes quantization more resistant to outliers, since the increased quantization error as-
sociated with outliers is restricted to the block containing the outlier, instead of affecting
all values.

The 4-bit NormalFloat datatype is an information-theoretically optimal datatype for
normally distributed data, a status achieved by ensuring an even distribution of values
across all quantization bins after quantization (Dettmers, Pagnoni, et al. 2023, Section 3,
4-bit NormalFloat Quantization). This makes it suitable for the quantization of LLMs,
since pre-trained model weights are generally distributed along a zero-centered normal
distribution (Dettmers, Pagnoni, et al. 2023, Appendix F). This is due to pre-trained
model weights being initialized according to such a distribution, with training yielding no
significant influence on the statistical characteristics of the initialized state. Using this
insight, the NF4 values qj are calculated based on the quantiles of the normal distribution.
Quantiles are values which partition a distribution or finite set of values into subsets of
maximally equal likelihood or occurrence, respectively. The construction of NF4 values,
see (Yoshida 2023), follows the process detailed in Enumeration 1. The choice of 4-bit
precision for the NF4 datatype is motivated by systematic experiments across multiple
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model parameter counts loaded in varying levels of precision, which demonstrate that 4-
bit precision provides an almost universally optimal trade-off between total model bits and
zero-shot accuracy (Dettmers and Zettlemoyer 2022). These findings ignore the additional
improvement to the number of Floating Point Operations Per Second (FLOPS) able to be
executed by the GPU hardware during training, which shares an inversely proportional
relationship to the bits in the quantization datatype nFLOPS ∝ 1

k
, where nFLOPS is the

number of FLOPS executed during training and k is the number of bits in the qunatization
datatype. Thus, a reduction in precision to the quantization datatype leads directly to
reduced training duration proportional to the relative reduction.

1. Set δ = 1
2

(
1
32

+ 1
30

)

2. Compute 8 evenly spaced probability values p1, . . . , p8 such that p1 = δ and p8 =
1
2

3. Find their pre-images under the Gaussian CDF, Φ : q̃i = Φ−1(pi) for i = 1, . . . , 8

4. Compute 9 evenly spaced probability values r8, . . . , r16 such that r8 =
1
2
and r16 =

1− δ
5. Set q̃i = Φ−1(ri) for i = 9, . . . , 16 (r8 is ignored since q̃8 is already set to 0)

6. Normalize the q̃s to the range [-1, 1] to get the final code: qi =
q̃i

maxi |q̃i|

Enumeration 1: NF4 Construction

The constructed NF4 code defines a set of values in the range [−1, 1] with q1 = −1,
q8 = 0, and q16 = 1. The largest unnormalized quantization value q̃i is equivalent
to Φ−1(1 − δ) ≈ 1.848, such that the final quantization values q are quantiles of the

normal distribution N
(
0, 1

Φ−1(1−δ)

)
. The final quantization values are visualized over

the corresponding normal distribution in Figure 5.

Double Quantization, as the name suggests, involves quantizing the quantization con-
stants computed by an initial quantization in order to achieve a further reduction in
memory footprint per parameter (Dettmers, Pagnoni, et al. 2023, Section 3, Double
Quantization). This is a valuable innovation, because while quantization allows for more
efficient storage and computation, there is still a non-negligible memory overhead as-
sociated with storing absmax quantization constants. An example from the authors of
QLoRA quantifies this overhead, illustrating that 4-bit quantization with 32-bit constants
and a blocksize of 64 adds 32

64
= 0.5 bits per parameter (one 32-bit quantization constant

for every 64 parameters). The essence of double quantization lies in reducing this over-
head by quantizing the computed quantization constants. Discussion of the example is
continued by the QLoRA authors in order to quantify the reduction of the memory over-
head, demonstrating that a second quantization with 8-bit constants and a blocksize of
256 yields a memory reduction from 0.5 bits per parameter to 8

64
+ 32

(64·256) ≈ 0.127 bits
per parameter. Thus, in total, the memory overhead of 4.5 bits per parameter is re-
duced to approx. 4.127 per parameter, leading to an overall memory reduction of approx.
8.3%.
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Figure 5: Visualization of NF4 values over corresponding normal distribution

Finally, Paged Optimizers, which make use of NVIDIA unified memory, allow for page-to-
page transfers between the CPU and GPU in cases where the GPU runs out of memory
(Dettmers, Pagnoni, et al. 2023, Section 3, Paged Optimizers). They are implemented us-
ing a lazy offloading algorithm which automatically transfers the optimizer state memory
in cases of memory spikes that exceed GPU memory. These memory spikes generally oc-
cur in cases where a large mini-batch, i.e., a batch containing higher than usual sequence
lengths, requires more GPU memory than is available to maintain the corresponding op-
timizer state. In this case, a designated paging engine evicts the allocated memory for
the optimizer state to the CPU RAM and pages it back into GPU memory when it is
required for optimizer updates.

In conjunction with each other as well as LoRA, these innovations characterize the imple-
mentation of QLoRA, see (Dettmers, Pagnoni, et al. 2023, Equation 5, QLoRA), defined
for an arbitrary linear layer with one LoRA adapter as follows:

Y BF16 = XBF16doubleDq(cFP321 , cFP82 ,WNF4) +XBF16BBF16ABF16 ∈ Rn×d, (1.4a)

doubleDq(cFP321 , cFP82 ,WNF4) := dq(dq(cFP321 , ck-bit2 ),WNF4) = WBF16 ∈ Rd×d, (1.4b)

where Y ∈ Rn×d is the output, X ∈ Rn×d is the input, c1 ∈ R, c2 ∈ R are the quantization
constants, W ∈ Rd×d is the quantized weight matrix, B ∈ Rd×r, A ∈ Rr×d are the LoRA
adapters, and dq(·), doubleDq(·) represent single and double quantization, respectively.
The variable superscripts declare the datatype of the variable. From (1.4a), it follows
that QLoRA implements a storage datatype (NF4) for the model architecture and a
computation datatype (BF16) for forward and backward passes as well as computing
adapter gradients. The conceptual composition of QLoRA in comparison to previously
discussed finetuning methods is visualized in Figure 6 (Dettmers, Pagnoni, et al. 2023,

24



Figure 1).

Figure 6: QLoRA in comparison to LoRA and Full Finetuning (from Dettmers,
Pagnoni, et al. 2023)

QLoRA benefits not only from the advantages of LoRA, but also from reduced memory
consumption without loss in performance, while additionally loosening the strict thresh-
old on GPU memory (Dettmers, Pagnoni, et al. 2023, Section 2). Benefits regarding
memory requirements were also observed for QLoRA practically (Dettmers, Pagnoni, et
al. 2023, Section 4): finetuning a 65B parameter model resulted in a reduction in average
memory consumption from over 780GB to under 48GB without degradation in perfor-
mance (regarding inference latency and response accuracy) when compared to 16-bit full
finetuning. This significant memory reduction enables finetuning to be performed on
48GB graphics cards such as the RTX A6000 or A40, or alternatively on two consumer-
grade 24GB graphics cards, such as the RTX 3090 or RTX 4090. Finally, empirical trials
showed that a blocksize of 64 for 4-bit NormalFloat quantization on W, a blocksize of
256 for 8-bit float subsequent quantization (on quantization constants), and 16-bit Brain
Float as the computation datatype (for the weight gradients of LoRA parameters) yields
performance which matches 16-bit full finetuning and 16-bit LoRA finetuning while sig-
nificantly reducing memory consumption.

1.5 Evaluation

The goal of evaluation is to assess the quality of model inferences respective to the model’s
domain and learning task. To this end, established metrics are used define distance/sim-
ilarity between output and reference tokenized string sequences (Yan 2023).

For example, Bilingual Evaluation Understudy (BLEU), a precision-based metric, mea-
sures the relative occurrence of n-grams in a generated output Ŝ also appearing in the
corresponding reference sequence S. For a given tokenized sequence y = y1y2 · · · yK and
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token length n ∈ N, the set of n-grams Gn is defined as:

Gn(y) := {y1 · · · yn, y2 · · · yn+1, · · · , yK−n+1 · · · yK}.

Based on this definition, the measure of precision implemented by BLEU, see (Papineni
et al. 2002, Section 2.1.1), for a given token length n is defined as follows:

precisionn(Ŝ, S) :=

∑
g∈Gn(Ŝ) min

(
C
(
g, Ŝ

)
, C (g, S)

)

∑
g∈Gn(Ŝ)C

(
g, Ŝ

) ∈ [0, 1],

where C(g, S) represents the number of times an n-gram g occurs in some sequence S.
Another component integrated into BLEU is a brevity penalty, which penalizes sentences
of length r ∈ N below the reference sequence length c ∈ N, defined as:

BP(Ŝ, S) :=

{
1 if r ≤ c,

e−( r
c−1

) otherwise.

The implementation of a brevity penalty is motivated by the goal to avoid bias toward
short sentences that would otherwise arise as a result of the high relative occurrence of
select words in short sentences. The score produced by BLEU, see (Papineni et al. 2002,
Section 2.3), is calculated by taking the weighted geometric mean of the precisionn values
calculated for all positive integer token lengths and applying the brevity penalty:

BLEUw(Ŝ, S) := BP(Ŝ, S) · exp
(

∞∑

n=1

wn ln precisionn(Ŝ, S)

)
∈ [0, 1],

where wn ∈ w are the weights for each token length n. Weights are commonly set to
1
n
.

Other methods, such as BERTScore (T. Zhang et al. 2019), involve measuring the se-
mantic similarity between sequences by comparing their token embeddings. We focus on
and make use BLEU for performance evaluation in our work.
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2 Experimental Setup

Our experimental analysis is performed in cooperation with classix, a software develop-
ment company newly founded in 1994 through a change of name from Brenner Daten-
systeme GmbH, founded in 1983. Since its inception, classix has continually developed
an object-oriented framework for building and maintaining business applications, with
which multiple large-scale enterprise resource planning (ERP) systems have been pro-
duced. The development of this framework reflects a comprehensive approach to data
modelling based on object-oriented components, which facilitates the production of indi-
vidual software solutions through abstraction. The abstract enterprise data model at the
heart of this concept is embodied by the CyberEnterprise architecture, which remains
consistent regarding its original structure in the modern era, despite constant improve-
ment regarding the functionality of software applications based on this model. Using the
CyberEnterprise architecture as a foundation, a domain-specific programming language
called InstantView and corresponding framework comprising various business applica-
tions called AppsWarehouse was developed. These systems facilitate the production of
highly individualized business solutions in short amounts of time.

We detail the preparation of training data and method for evaluation of model perfor-
mance for our finetuning implementations, as well as the resources that are currently
available for custom implementations of finetuning in this section. More specifically, re-
sources for foundation models, finetuning parameters, and the applied training algorithm
are presented, with an added focus on software implementation.

2.1 Data

The raw data used as a foundation for finetuning training data stems from the documen-
tation of the classix software infrastructure, which exists both in the form of a technical
documentation on https://instantview.org, as well as a general, more practical docu-
mentation on https://appswarehouse.de. These documentations provide descriptions
for classix classes and modules, respectively, in both English and German, in order to
facilitate effective navigation and utilization of tools and systems within the classix infras-
tructure. For the learning tasks we propose, solely the AppsWarehouse documentation
serves as a source of training data, since its contents provide more general and digestible
insight into the classix infrastructure.

Since the documentation is a web documentation written in HTML, a semantic parsing
of all pages was performed, which systematically retrieves relevant blocks of text into
a JSON document. The format of the resulting documents for each documentation is
presented in Section A of the appendix.

The blocks of text extracted from the documentation were pre-processed according to
the respective requirements for auto-regressive and Alpaca training data formats. Pre-
processing for auto-regressive finetuning involves ensuring that the text sequences of
the training data are used for gradient optimization in their entirety. Pre-processing
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for “Alpaca-style” finetuning involves injecting specific surrounding text into training
sequences in order to produce a consistent scheme designed for instruction following
in conversational dialog. This scheme, adapted by researchers at Stanford, comprises
specifically-worded instruction, input, and output sequences, where the instruction se-
quence defines the prompted task, the optional input sequence defines supplementary
context for the instruction, and the output sequence defines the desired model response
(Taori et al. 2023). The conceptual roots for structuring sequences according to this
scheme lie in instruction-tuning, a finetuning scheme in which training data is prepared
in a way that improves the ability of language models to follow natural language instruc-
tions (S. Zhang et al. 2023). The Alpaca dataset contains 52000 sequences generated
using the self-instruct framework, a framework for generating instruction-tuning train-
ing sequences which largely circumvents the need for human annotation (Y. Wang et al.
2022). An example training sequence from the Alpaca dataset is presented in Listing 3.
Sequences that follow the instruction-tuning scheme are generally finetuned such that
only on the output sequences are used for gradient optimization.

Below is an instruction that describes a task, paired with an input that provides
↪→ further context. Write a response that appropriately completes the request.

### Instruction: Explain why the following fraction is equivalent to 1/4

### Input: 4/16

### Response: The fraction 4/16 is equivalent to 1/4 because both numerators and
↪→ denominators are divisible by 4. Dividing both the top and bottom numbers by
↪→ 4 yields the fraction 1/4.

Listing 3: Alpaca training sequence

2.2 Model and Parameters

Foundation models were accessed through Hugging Face, a platform which offers access
to a host of models, datasets, and algorithms for various machine learning tasks. Of the
provided models, versions of the LLaMA and LLaMA-2 models were used as foundation
models for finetuning.

The parameters we used for finetuning are based on those that were used for finetuning the
guanaco model family, which constitutes the basis for analysis of QLoRA by its original
authors. These parameters were largely adopted and adjusted for individual learning
tasks. Although LoRA makes up a direct part of the implementation of QLoRA, some
of the parameters employed by the authors of QLoRA differ from those proposed by the
authors of LoRA. These differences are detailed in Table 3.

Furthermore, we make our own adjustments to parameters, primarily in order to tailor
them to the training datasets we use. These adjustments are detailed in Table 4.
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Parameter LoRA QLoRA
LoRA rank 4 64
LoRA modules q, v or q, k, v, o all
LoRA dropout 0.0 0.1
LoRA alpha 128 16

Table 3: Comparison of differing finetuning parameters proposed by LoRA vs. QLoRA
authors

Parameter QLoRA Us
eval dataset size 1024 128
max eval samples 1000 100
source max len 16 1024
target max len 512 1024

Table 4: Comparison of differing finetuning parameters QLoRA proposes vs. ones we
implement

A full list of the parameters we employ (for finetuning LLaMA-2-7b, as an example) is
located in Section B of the appendix.

2.3 Training algorithm

The weights of the LoRA adapters are initialized such that the first matrix factor B
is zero-initialized and the second matrix factor A is initialized using a uniform Kaim-
ing distribution (He et al. 2015). In general, Kaiming initialization is an initialization
method that accounts for non-linear activation functions, particularly rectifiers, such as
the SwiGLU (Shazeer 2020) activation function we make use of, by ensuring uniform
variance throughout all layers (He et al. 2015, Section 2.2). Its derivation is accordingly
based on analysis of the layer-wise progression of variance in both forward and back-
propagation. In the case of forward propagation, the derivation involves the l-th layer’s
response function, defined as:

yl = W lxl + bl,

where yl ∈ Rd is the response, W l ∈ Rd×d is the weight matrix, xl ∈ Rd is the input,
and bl ∈ Rd is the bias. The goal is to find some W l such that Var[yl] = Var[yl−1].

Since bl is assumed to be zero-initialized, the elements of W l are mutually independent
while sharing some distribution, the elements of xl are assumed to also be mutually inde-
pendent while sharing some distribution, and W l and xl are independent of each other,
the response function can be represented in terms of variances on random variables:

Var[yl] = dVar[wlxl], (2.1)
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where yl, wl, and xl are random variables of yl, W l, and xl, respectively. The presence
of the factor d in this representation is explained by the additional dimension of W l =
[wl,1, . . . ,wl,d], such that this matrix, when multiplied by xl = [xl,1, . . . , xl,d]

T , effectively
produces a sum of d vectors xl,1wl,1 + xl,2wl,2 + · · · + xl,dwl,d, where each vector is
individually represented by the product of random variables wlxl. Assuming wl has zero
mean, the representation in (2.1) can be rewritten according to the variance of the product
of independent variables:

Var[yl] = dVar[wl]E[x
2
l ].

Assuming wl−1 has a symmetric distribution around 0 and bl−1 = 0, yl−1 also has a
symmetric distribution around 0 (and thereby zero mean), which, for the ReLU activation
function4, leads to E[x2l ] =

1
2
Var[yl−1]. This can be explained intuitively, since Var[yl−1] =

E[y2l−1] holds due to yl−1 having zero mean, and the necessary conclusion E[y2l−1] = 2E[x2l ]
is explained by yl−1 having a symmetric distribution around 0, as well the definition
for ReLU xl = max(0, yl−1), as a symmetric distribution around 0 provides exactly one
additional source for each value present in its square over the same distribution with no
values in the negative domain. The resulting equation and its cumulative counterpart for
all layers up to L are presented in the following:

Var[yl] =
1

2
dVar[wl]Var[yl−1], (2.2a)

Var[yL] = Var[y1]

(
L∏

l=2

1

2
dVar[wl]

)
. (2.2b)

The relationship between Var[yL] and Var[y1] in (2.2b) demonstrates that the relevant
product must take on the value of a scaler, as optimal initialization avoids exponential
reduction or amplification of the magnitude of input signals. Thus, a sufficient condition
for such initialization can be proposed:

1

2
dVar[wl] = 1 ∀l.

The back-propagation case is handled similarly, using layer gradients as a basis for anal-
ysis, and yields a compatible condition.

For the SwiGLU activation function used in LLaMA and LLaMA-2 with a given pre-
trained model dimension d, the uniform Kaiming distribution generates a uniform dis-
tribution on the interval [− 1√

d
, 1√

d
], resulting in a mean of 0 and a variance of 1

3d
. The

derivation of these definitions is located in Section C of the appendix.

4The authors of Kaiming Initialization focus specifically on ReLU. Other activation functions can
produce coefficients that differ from the 1

2 found in relevant calculations. This will be based on the
relationship between the expectation of a squared random variable with a symmetric distribution around
0 and a squared random variable with the respective activation function applied to the same distribution.
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SwiGLU, see (Shazeer 2020, Equation 5), is based on the Swish (Ramachandran, Zoph,
and Le 2017) and Gated Linear Units (GLU) (Shazeer 2020) activation functions, defined
as follows:

SwiGLU(x,W, V, b, c, β) := Swishβ(xW + b)⊗ (xV + c) ∈ Rdswish ,

Swishβ(x) := xσ(βx) ∈ Rdswish ,

where x ∈ Rsequence length×d is an input sequence, W ∈ Rd×dswish and b ∈ Rdswish are the
weight and bias for the linear transformation in the Swish component, V ∈ Rd×dswish and
c ∈ Rdswish are the weight and bias for the linear transformation in the gate component,
β ∈ R is a learned parameter controlling the smoothness of the function, σ : R → R
is the sigmoid activation function (applied to each matrix element), and ⊗ represents
the component-wise product. It benefits from properties such as smoothness, non-
monotonicity, and a gating mechanism, yielding high performance relative to other estab-
lished GLU variants, particularly for tasks related to language modeling (Shazeer 2020,
Section 3).

The optimization algorithm used during training is AdamW 5. AdamW is an algorithm
similar to Adaptive Moment Estimation (Adam), differing only in its implementation of
weight decay. Adam is an efficient stochastic optimization algorithm requiring only first-
order gradients that, using L2 regularization, implements weight decay as an extension
of the gradient calculation of the loss function (Kingma and Ba 2014):

gt ← ∇ft (θt−1) + λθt−1,

where ∇ft (θt−1) ∈ Rn is the gradient of the loss function with respect to the parameters
θt−1 ∈ Rn at the time step t−1, t ∈ N, and λ ∈ R is the regularization parameter.

AdamW proposes a correction to the way weight decay is implemented in Adam by decou-
pling the weight decay from the optimization steps taken with respect to the loss function
(Loshchilov and Hutter 2017). In algorithmic terms, this equates to implementing weight
decay as an extension of the parameter update itself, instead of the loss gradient:

θt ← θt−1 − ηt
(
αm̂t/(

√
v̂t + ϵ) + λθt−1

)
,

where α = 0.001 and ϵ = 10−8 are pre-defined constants, ηt ∈ R is the schedule multiplier,
and m̂t ∈ Rn, v̂t ∈ Rn are the first/second moment vectors, respectively.

Finetuning was performed for 1875 iterations, also called steps, equivalent to approx.
30 epochs in our case6, and, for LLaMA-2-7b with our finalized dataset (detailed in
Section 3), yielded the loss curves displayed in Figure 7. The shape of these curves is
characteristic for the finetuning of all models for this dataset regardless of parameter

532-bit Paged AdamW
6The dependency between steps and epochs arises from the number of training batches used, since

a step denotes the forward and backward pass of a single batch, whereas an epoch denotes the forward
and backward pass of all training samples.

31



count, and thus provides a generalized representation of the progression of loss during
finetuning for the implemented training procedure. In general, loss is computed using
cross-entropy on next-token model predictions. More specifically, given the tokenized
input sequence x = (x1, . . . , xn) and output sequence y = (y1, . . . , ym) of an arbitrary
training sample, cross entropy loss (see (1.3)) is computed sequentially over all model
output predictions:

Ctotal = −
m∑

i=1

logPΦ(yi|x, y<i) ∈ [0,∞).

The evaluation loss values stem from periodic evaluation every 187 iterations (approx. 3
epochs) on a 100-sample evaluation dataset randomly extracted from the original training
data. The MMLU loss values result from the default evaluation on the MMLU dataset.
The MMLU dataset consists of multiple-choice questions pertaining to various fields, such
as astronomy, elementary mathematics, philosophy, and many more. These questions are
designed to measure a model’s multitask accuracy as well as its academic and professional
understanding (Hendrycks et al. 2020). For this reason, it is expected, if not hoped for,
that a model’s multitask accuracy decreases as it becomes more adapted to a specific
domain through finetuning.
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Figure 7: Loss curves for LLaMA-2-7b trained with r=64 on finalized dataset

While the shape of the training loss curve conforms with expectations for the development
of training accuracy on deep learning tasks, the evaluation and MMLU loss curves behave
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in an unusual fashion. One can observe a significant drop in both evaluation and MMLU
loss after the first 187 iterations, followed by inconsistent development that generally
trends upward, more so for evaluation loss than MMLU loss. This may be explained
by initial iterations providing the model with relevant general information regarding the
classix infrastructure and overall business concepts, while later iterations overfit the model
to information regarding the classix modules present in the training data. However, for
the proposed learning task, detailed in Section 3, an overfitted model is not necessarily
an undesirable result.

2.4 Evaluation

Model performance was evaluated by measuring the accuracy of generated module de-
scriptions. Module descriptions were generated by prompting models to describe a given
module contained in the training data, after which the produced output is compared
to the genuine module description. Due to their complexity, it is generally important
for modules to be described nearly verbatim with respect to the original module de-
scription. Furthermore, an embedding-based semantic comparison between generated
and true module descriptions is susceptible to hallucination, since hallucinated responses
are often thematically accurate despite being inappropriate with respect to their exact
content. Thus, module description accuracy is evaluated using BLEU. As a necessary
word of warning regarding the use of the popular term “hallucination” to describe un-
desirable model responses, it should be considered that LLMs, as auto-regressive models
designed solely for next-token prediction, do not and cannot share the human perspective
on reasonable and desirable behavior regarding natural language. In this sense, “hallu-
cination” is a rather anthropomorphic term for, contrary to the way the term is usual
used, determinable and reproducible behavior.

In order to ensure reproducible results, the temperature inference parameter was min-
imized, causing the model to respond deterministically. Temperature, along with the
top-k and top-p parameters, defines the degree of randomness in model inferences. More
specifically, temperature operates on softmax (see (1.1)), augmenting the definition to
either accentuate or diminish the impact of large activations, which can be observed in
the following definition for softmax parameterized with temperature T ∈ R+:

softmaxT (x)i :=
e

xi
T

∑n
j=1 e

xj
T

∈ Rn.

The modified definition illustrates that for 0 < T < 1, the relative likelihood assigned to
high activations is increased, whereas it is decreased for 1 < T < inf. This, by extension,
indicates that as T approaches 0, the maximal activation xmax approaches 1, making
token selection deterministic:

lim
T→0

softmaxT (x)i =

{
1 if xi > xj ∀j ̸= i,

0 otherwise.
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In this extreme case, the modified softmax function acts simply as a traditional max
function.

2.5 Software implementation

Currently, most of the support for QLoRA finetuning is fundamentally written in Python.
The Python modules responsible for providing the core functionality of QLoRA finetun-
ing are the torch, peft, transformers, and bitsandbytes modules. The torch module, made
available as part of the PyTorch framework, is responsible for the efficient execution of
deep learning training algorithms by providing an implementation for GPU-accelerated
tensor computation. We use this module for the execution of our training algorithm and
for later analysis of model weights. The peft module is part of a Hugging Face framework
responsible for implementations of various PEFT methods (Mangrulkar et al. 2022). The
PEFT methods currently supported are LoRA, Prefix-Tuning, P-Tuning, Prompt Tuning,
AdaLoRA, LLaMA-Adapter, and IA3, though we focus on and make use of the LoRA
implementation. The transformers module is part of another Hugging Face framework re-
sponsible for providing access to state-of-the-art pre-trained models, as well as support for
various finetuning prerequisites, such as tokenization, as well quantization and inference
configurations (Wolf et al. 2020). In addition, this module supports the configuration
of various callbacks to be executed during training, such as periodic model evaluation
and logging of model loss. The bitsandbytes module, developed by Tim Dettmers, is
responsible for efficient implementations of quantization and low-bit inference, as well as
providing implementations of low-bit optimizers.

Our implementations of QLoRA finetuning and model inference are based on Python
scripts which can be found in the QLoRA Github. Based on this, we detail the basic
setup and procedure required to reproduce our implementation.

2.5.1 Installation

Our implementation is based on Linux, specifically Ubuntu 22.04, since a fully functional
version of bitsandbytes has not been implemented for Windows to date. The first required
installation is that of the CUDA Toolkit, which provides the GPU-accelerated libraries
necessary for efficient finetuning. We used CUDA version 11.7. Additionally, a compatible
Python version (3.6+) must be installed. For a minimal finetuning implementation, only
the following Python modules must be installed: accelerate, bitsandbytes, datasets, peft,
transformers. However, other modules are also defined as installation requirements in the
QLoRA Github, which offer additional functionality such as evaluation metrics during
training, listed in Listing 4.

bitsandbytes==0.40.0, transformers==4.31.0, peft==0.4.0, accelerate==0.21.0, einops
↪→ ==0.6.1, evaluate==0.4.0, scikit=learn==1.2.2, sentencepiece==0.1.99, wandb
↪→ ==0.15.3

Listing 4: Python module requirements
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A final requirement pertaining to the use of LLaMA-2 models, specifically, is authen-
tication with an access token of a Hugging Face account which has been approved by
Meta. As of the current date, users wishing to access a LLaMA-2 model through Hug-
ging Face must apply for approval by filling out the required form. After approval, which
generally takes 1-2 days, a user access token must be generated on the approved Hugging
Face account and added to the git credential manager through the commands listed in
Listing 5.

git config --global credential.helper store

huggingface-cli login

Listing 5: LLaMA-2 authentication through git credential manager

2.5.2 Finetuning

We detail the steps necessary for finetuning on an arbitrary custom dataset using LLaMA-
2-7b in Python, though both the dataset and model are completely interchangeable. The
first step involves loading the pre-trained model and corresponding tokenizer with calls
to respective from pretrained functions, as well as adding special tokens to the LLaMA
tokenizer using add special tokens, detailed in Listing 6.

Afterwards, a preprocessing step prepares the model for QLoRA finetuning using the
prepare model for kbit training and get peft model functions, detailed in Listing 7.

Following this, a step for loading the training dataset is required. Datasets on Hugging
Face can be loaded directly using the load dataset function, or from local files using the
Dataset class. In our case, we load a local dataset in the JSON format using the from json
member function, detailed in Listing 8.

Finally, QLoRA finetuning can be performed using the train member function of a defined
Seq2SeqTrainer object, detailed in Listing 9.

2.5.3 Inference

After finetuning, adapter checkpoints can be loaded in conjunction with the corresponding
pre-trained model in order to use the finetuned model for inference. The finetuned model
can be loaded with calls to specific from pretrained functions, similar to the loading
process during finetuning, detailed in Listing 10.

Subsequent calls to the generate member function of the model object can be used to
generate inferences on a given prompt, detailed in Listing 11.
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1 import torch
2 from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
3

4 model id = ”meta=llama/Llama=2=7b=hf”
5

6 bnb config = BitsAndBytesConfig(
7 load in 4bit=True,
8 bnb 4bit use double quant=True, # Use double quantization
9 bnb 4bit quant type=”nf4”, # NF4 as storage datatype

10 bnb 4bit compute dtype=torch.bfloat16 # BF16 as copmutation datatype
11 )
12

13 tokenizer = AutoTokenizer.from pretrained(model id, tokenizer type=”llama”, padding side=”right”,
↪→ use auth token=True)

14

15 model = AutoModelForCausalLM.from pretrained(model id, quantization config=bnb config,
↪→ device map=”auto”, use auth token=True)

16

17 tokenizer.add special tokens({
18 ”eos token”: tokenizer.convert ids to tokens(model.config.eos token id),
19 ”bos token”: tokenizer.convert ids to tokens(model.config.bos token id),
20 ”unk token”: tokenizer.convert ids to tokens(
21 model.config.pad token id if model.config.pad token id != =1 else tokenizer.pad token id
22 ),
23 })

Listing 6: Loading pre-trained model

1 from peft import prepare model for kbit training, LoraConfig, get peft model
2

3 model.gradient checkpointing enable()
4 model = prepare model for kbit training(model)
5

6 config = LoraConfig(
7 r=64, # LoRA rank
8 lora alpha=16, # LoRA Alpha (weight update scaling factor)
9 lora dropout=0.1, # LoRA dropout (10% dropout)

10 target modules=[”q proj”, ”v proj”], # LoRA modules (in this case, the query and key attention
↪→ projections)

11 bias=”none”, # No bias neurons
12 task type=”CAUSAL LM” # Learning task as causal language modeling (next=token prediction)
13 )
14

15 model = get peft model(model, config)

Listing 7: Pre-processing pre-trained model

36



1 from datasets import load dataset, Dataset
2

3 # load dataset(”tatsu=lab/alpaca”)
4

5 dataset path = ”path/to/dataset.json”
6

7 dataset = Dataset.from json(path or paths=dataset path)

Listing 8: Loading training dataset

1 import transformers
2

3 trainer = transformers.Seq2SeqTrainer(
4 model=model,
5 tokenizer=tokenizer,
6 train dataset=dataset,
7 args=transformers.TrainingArguments(
8 per device train batch size=1, # Training batch size per GPU
9 do eval=True, # Perform evaluation on sampled evaluation data

10 do mmlu eval=True, # Perform evaluation on MMLU data
11 per device eval batch size=1, # Evaluation batch size per GPU
12 max steps=1875, # Maximum total steps
13 eval steps=187, # Evaluation interval
14 save steps=500, # Model checkpoint saving interval
15 logging steps=10, # Training metrics logging interval
16 optim=”paged adamw 32bit”, # Optimization algorithm
17 learning rate=2e=4, # Learning rate
18 gradient accumulation steps=16, # Gradient update every 16 batch gradient accumulations
19 max grad norm=0.3, # Normalize gradients to prevent them from getting too large
20 warmup ratio=0.03, # Number of iterations before learning rate attains its designated value

↪→ through linear progression starting from 0
21 output dir=”path/to/output” # Directory in which to save model checkpoints
22 ),
23 data collator=transformers.DataCollatorForCausalLM(tokenizer, source max len=1024,

↪→ target max len=1024)
24 )
25

26 model.config.use cache = False
27

28 trainer.train()

Listing 9: Executing QLoRA finetuning
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1 import torch
2 from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3 from peft import PeftModel
4

5 model id = ”meta=llama/Llama=2=7b=hf”
6 adapter path = ”path/to/adapter/checkpoint”
7

8 tokenizer = AutoTokenizer.from pretrained(model id)
9 tokenizer.bos token id = 1 # Fixing some of the early LLaMA HF conversion issues.

10

11 model = AutoModelForCausalLM.from pretrained(
12 model id,
13 torch dtype=torch.bfloat16,
14 device map=”auto”,
15 load in 4bit=True,
16 quantization config=BitsAndBytesConfig(
17 load in 4bit=True,
18 bnb 4bit compute dtype=torch.bfloat16,
19 bnb 4bit use double quant=True,
20 bnb 4bit quant type=”nf4”,
21 )
22 )
23

24 model = PeftModel.from pretrained(model, adapter path)
25 model.eval()

Listing 10: Loading finetuned model

1 from transformers import GenerationConfig
2

3 prompt = ”What is the meaning of life?”
4 promptAlpaca = f”Below is an instruction that describes a task. Write a response that appropriately

↪→ completes the request.\n\n### Instruction:\n{instruction}\n\nResponse:”
5

6 inputs = tokenizer(promptAlpaca, return tensors=”pt”).to(’cuda’)
7

8 outputs = model.generate(
9 **inputs,

10 generation config=GenerationConfig(
11 do sample=True,
12 max new tokens=64, # Maximum number of tokens in the model response
13 top p=0.9,
14 temperature=0.7,
15 )
16 )
17

18 text = tokenizer.decode(outputs[0], skip special tokens=True)
19 print(text) # ”42!”

Listing 11: Inference using finetuned model
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3 Methodology

We detail a sequence of finetuning implementations involving two learning tasks that
pertain to the classix infrastructure in this section. Specifically, the training data, foun-
dation model, and finetuning parameters utilized, as well as a qualitative assessment of
finetuned model performance is presented.

3.1 Learning Task 1: Rudimentary understanding of the classix
infrastructure

As an introduction to LLM finetuning, the task of developing a rudimentary under-
standing of concepts relevant to the classix infrastructure was proposed. For simplicity,
dialog capability was not yet deemed a prerequisite. Thus, finetuning was performed
auto-regressively, thereby adapting the model for text completion.

3.1.1 Training Data

To compose text sequences for training, text data was extracted from each article in the
parsed JSON document by concatenating the module name and description (if present),
followed by block name and description for all blocks in the article. For example, the
sequence for the module utilpurc is displayed in Listing 12.

utilpurc: This module is used for the inspection of purchasing data. Results window:
↪→ This window lists the data to be checked as a result of an inspection run.
↪→ Module name: utilpurc.mod.

Listing 12: utilpurc module sequence

The resulting tokenized sequences exhibited statistical characteristics presented in Ta-
ble 5.

Statistical characteristic Value
no. of sequences 914
mean sequence length 427.84
standard deviation of sequence length 611.51
minimum sequence length 5
maximum sequence length 7276
25th percentile sequence length 88
50th percentile sequence length 231
75th percentile sequence length 515
no. of sequences maximally 2000 tokens long 892 (97.6%)

Table 5: Statistical characteristics of tokenized sequences (auto-regressive)
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3.1.2 Model and Parameters

As an initial experimental finetuning attempt, setup and execution was conducted on
a local computer housing a 16GB RTX 4080 graphics card. This allowed for the fine-
tuning of LLaMA-7b in approx. 3.5 hours. Aside from the target max len, which was
increased from 512 to 2000, training parameters were left identical to those used for
training guanaco-7b. This parameter was increased to leverage LLaMA-7b’s maximal
2048 token sequence length in order to fit most sequences into a forward pass without
the need for sequence partitioning.

3.1.3 Results

In order to acquire a general first impression of the capabilities of finetuned models,
an approach guided by heuristics was employed for assessing model performance, rather
than systematic evaluation. To this end, the following points of interest were investi-
gated:

1. Does the model “speak in classix terms”?

2. How does the model respond to vague prompts, which are relevant to multiple
different modules?

3. Can and does the model produce responses verbatim from a module description?

4. Can the model respond to questions appropriately?

Each point is answered based on conclusive observations in the following:

1. The model speaks in terms that could be attributed to classix by an unfamiliar
party, but is riddled with hallucinations and false claims behind a confident facade.
The model does not consistently provide reliable information on modules within
the classix infrastructure.

2. The model is observably inclined to hallucation if the prompt does not provide
the necessary context regarding the module being referenced. In cases where a
prompt lacks the necessary context, the model will respond with the description of
an arbitrary module of its choice, which can easily vary for a single prompt given a
sufficient temperature value.

3. The model can produce responses verbatim from a module description, though this
wasn’t observed to occur frequently, even if the prompt contained a verbatim part
of a module description.

4. The model can respond to questions appropriately, though it is unreliable. Occa-
sionally, the model interprets a question as a rhetorical device, to which it responds
with further rhetorical devices in an almost philosophical manner.

Exemplary model inferences to support these observations are presented in Section D of
the appendix.
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3.2 Learning Task 2: Denomination of classix modules in a di-
alog format

After establishing auto-regressive capabilities, the feasibility of instruction-tuning for chat
dialog was investigated. A relevant learning task comprising the denomination of classix
modules was proposed to structure dialog data.

3.2.1 Training Data

Based on the same training data as in the previous learning task, data was prepared in
bi-directional pairs for each module, such that for each module, one training sample for
description given a module name and one for denomination given a module description
was generated. The training data further took inspiration from the Alpaca dataset, in
order to align the foundation model with conversation dialog. Initial training data took
on the form depicted in Listing 13.

1. [Below is an instruction that describes a task, paired with an input that provides
↪→ further context. Write a response that appropriately completes the request.

### Instruction:
What is the name of this module?

### Context:
This is the description of the module <Modulename>: <Module Description>

### Response:], [The name of the module is <Modulename>.]

2. [Below is an instruction that describes a task. Write a response that appropriately
↪→ completes the request.

### Instruction:
What is the purpose of the module <Modulename>?

### Response:], [The purpose of the module <Modulename> is <Module Description
↪→ >.]

Listing 13: Alpaca-style training data format

In this format, the variables in angle brackets are replaced with the corresponding mod-
ule data and the square brackets denote the input and output sequences, respectively.
The input and output sequences are distinguished in order to control which tokens are
used for loss and gradient updates. Tokens in the input sequence are masked with “IG-
NORE INDEX” labels to avoid their use for loss calculation, which is thereby only ap-
plied to tokens in the output sequence. The numbers 1 and 2 enumerate the two training
samples which make up a bi-directional pair for a given module.
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The use of this dataset is motivated by the objective to train an LLM to understand
rudimentary concepts specific to the classix infrastructure for a relevant learning task,
namely the denomination of modules. The first sample in the format serves precisely
the purpose of the learning task by providing the description of a module as context
and querying the name of the module being described. The second sample serves the
purpose of training the foundation model on concepts and associations relevant to the
classix infrastructure (an added benefit to this sample is that the models are trained to
reliably provide verbatim descriptions of modules they are queried on).

Typical phrases were defined and randomly pooled from when formatting instructions
and responses in order to add diversity to the prompts which the model can manage as
well as the responses the model generates. A Python dictionary containing these phrases
is presented in Section E of the appendix.

The formatted sequences were subsequently evaluated on their tokenized lengths and
removed7 from the dataset if the length exceeded the limits defined by source max len
and target max len, respectively, in order to avoid sequence partitioning.

Statistical characteristics are presented for the input and output sequences used as train-
ing data in Table 6.

Statistical characteristic Input Output
no. of sequences 1260 1260
mean sequence length 125.61 84.79
standard deviation of sequence length 133.65 130.64
minimum sequence length 44 7
maximum sequence length 994 948
25th percentile sequence length 47 11
50th percentile sequence length 66 24
75th percentile sequence length 150.25 103.25

Table 6: Statistical characteristics of tokenized sequences (Alpaca-style)

3.2.2 Model and parameters

Since the functional capability of finetuning was established locally, further finetun-
ing was performed on a GPU cloud service. Here, finetuning was performed using an
80GB A100 graphics card. This allowed for the finetuning of LLaMA-7b in approx. 4
hours. Due to the new input/output format in the training sequences, the parameters
for source max length and target max len were modified to equal 1024 each, making full
use of LLaMA-7b’s maximal 2048 token sequence length.

7In total, 7 sequence pairs, i.e., 14 total sequences, were removed due to excess length.
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3.2.3 Results

It should be noted that the two “learning directions” introduced during training, i.e., the
denomination of modules based on a description and the description of modules based
on a name, do not exhibit identical performance despite each direction’s comprising an
equal number of training samples. This could be observed for model inferences gener-
ated on prompts representing each of these directions. Thus, each direction is analyzed
separately.

Firstly, the description of modules, though not intended as the primary learning objective,
produced notable accuracy, with model inferences often yielding the verbatim module de-
scription when prompted to describe a given module. However, when prompted with an
invalid module description, the model hallucinates heavily, often merging terms and con-
cepts from multiple unrelated modules. An example for this is presented for an imaginary
“feedmamm” module in Listing 14. In this example, terms such as “supplier declaration”
and “tax authority” both exist within the training data, but appear in completely unre-
lated modules. Tax authorities are referenced in the ecvatsta module, wherein the URL
appearing in the example is also present. However, the “Federal Trade Office (Bunde-
sanzeigerstelle)” is not referenced in the genuine module description (or anywhere in the
training data). Instead, the genuine module description makes reference to the “Fed-
eral Central Tax Office (BZSt)”. This is a subtle distinction, but it highlights the risk
for proper names to be recalled incorrectly, since these are broken down into individual
pieces during tokenization, making it harder for the model to identify them as coherent
concepts.

Prompt: Describe the feedmamm module.

Response: The purpose of the feedmamm module is the following: This module is used
↪→ to record supplier declarations. It is used if a supplier declares itself and all its
↪→ affiliated companies to be independent. This independent supplier declaration
↪→ must be reported to the tax authorities. The Federal Trade Office (
↪→ Bundesanzeigerstelle) can be reached on the Internet under https://www.bzst.
↪→ bund.de/contact/.

Listing 14: Hallucinated description given invalid module name

In contrast to the description of modules, the denomination of modules, which represents
the primary learning objective, produced low accuracy, with model inferences rarely yield-
ing the correct module name, even in cases where a module is described using large parts
or the entirety of the verbatim module description. The finetuned model demonstrates
an observable propensity to hallucation, generally responding not with the name of the
wrong module, but with a fabricated module name altogether. An example of this is
found in Listing 15, where the fabricated “financial” module is returned, despite the
correct module, balanfac, being described verbatim in the prompt. Also presented in
Listing 15 is an example demonstrating the fixation of the finetuned module on certain
parts of the prompt, as the presence of the name billofma directly invokes a corresponding
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model response, despite the prompt’s containing many other possible indicators of which
module is being described.

Prompt: With this module, the annual and period balances of a general ledger or
↪→ personal account posted in financial accounting are displayed. Which module is
↪→ being described?

Response: The module being described is financial.

Prompt: This is the description of the module billofma: Feeding guinea pigs and
↪→ groundhogs. Which module describes Donald Trump’s presidency?

Response: The module being described is billofma.

Listing 15: Hallucinated module names

The difference in accuracy in these results is presumably explained by the asymmetry of
the two training directions. While the training samples for the description of modules
give the finetuned model a clear sequence of tokens to optimize on, the training samples
for the denomination of modules force the finetuned model to attempt to learn to extract
the relevant information from a given prompt in order to produce an accurate module
name. Since only the module name and surrounding response formulation provide tokens
for gradient optimization in these samples, module denomination mainly involves training
the attention heads on recognizing relevant indicators from the corresponding descrip-
tion. Furthermore, the samples for the description of modules contain significantly longer
outputs comparatively, which provide more instances for gradient optimization.

3.3 Performance Improvement on Learning Task 2

During evaluation of the previous model, specifically regarding propensity to hallucation,
a jarring error was identified. Since the module name itself is included in the context for
samples querying the module name, any module name passed into a prompt would be
identified by the model as the queried module name, regardless of the contents of the mod-
ule description. To avoid this, finetuning for the same learning task was performed using
our finalized dataset containing corrected training data, in which the module name does
not appear in the context for the module description. Instead, the module description is
placed directly after the context tag, as shown in Listing 16.

### Context:
<Module Description>

Listing 16: Context without module name

The foundation model and training parameters remained identical to the previous fine-
tuning implementation.
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3.3.1 Results

Since samples for the learning direction responsible for the description of modules re-
mained unchanged, no changes to finetuned model performance were observed for model
inferences generated on prompts representing this direction. The module denomination
learning direction, however, exhibited notable improvements, particularly regarding the
behavior being targeted by the changes to the training data, namely fixation on module
names provided in prompts. To this end, the prompt which previously demonstrated the
model’s fixation on passed module names now also takes additional portions of text into
account, as demonstrated in Listing 17.

Prompt: This is the description of the module billofma: Feeding guinea pigs and
↪→ groundhogs. Which module describes Donald Trump’s presidency?

Response: The module being described is trumppres.

Listing 17: Improvement to hallucinated module names

Accuracy, even for prompts containing extensive descriptions, remained low, however. An
example for a successful case exists for the balanfac module, where the entire verbatim
module description is contained in the prompt, presented in Listing 18.

Prompt: With this module, the annual and period balances of a general ledger or
↪→ personal account posted in financial accounting are displayed. Which module is
↪→ being described?

Response: This module is balanfac.

Listing 18: Successful module denomination

Through evaluation of model performance on module denomination, an interesting quality
of the finetuned model was observed. The model, rather than classifying from a fixed
set of names, is observably trained to generate a plausible module name given some
description. This distinction is demonstrated using the query of a fabricated module in
Listing 19. In this example, a query for the name of a module that describes “feeding
mammals” is met with a response which contains the plausible and fitting module name
“feedmamm”. This name is not only semantically accurate, but also shares the syntactic
structure of many module names within AppsWH, comprising an 8-letter concatenation
of descriptive subwords according to the common AppsWH module naming scheme.

Prompt: This is the context of a module: feeding guinea pigs and groundhogs. Which
↪→ module describes feeding mammals?

Response: The module being described is feedmamm.

Listing 19: Generative rather than classifying model behavior
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4 Analysis

Though our experimental results do not fulfill expectations for the proposed learning task
of module denomination, they offer insight to finetuned model behavior and provide a
basis for more rigorous analysis regarding performance on the secondary learning objec-
tive, i.e., the description of modules. To this end, analysis using our finalized dataset
was extended into a more mathematical domain. More specifically, our work comprises
three types of analysis, each pertaining to the state of the adapter matrices after fine-
tuning. For the first type, finetuned model performance on the generation of module
descriptions is evaluated. To this end, BLEU scores are computed in order to measure
the accuracy of model-generated module descriptions with respect to the genuine module
description. The next form of analysis investigates the differences of finetuned adapter
matrices to their respective initialized states. Here, the absolute change in the elements
of these matrices is measured, which quantifies the change effected by finetuning nu-
merically and ensures, given sufficient magnitude, that “lazy training” has not taken
place, a phenomenon wherein model weights are hardly altered during finetuning. In
addition, the distribution of the singular values of the adapter differences is analyzed, as
well as the the impact on performance when adding truncated finetuned adapter matrix
differences to respective initialized states, particularly compared to the performance of
adapters finetuned conventionally with the truncated dimensions. The final type of anal-
ysis involves examining the similarity/distance between subspaces spanned by different
finetuned adapter matrices. Specifically, subspaces spanned by the products of adapter
matrices of modules in the layers of various models (differing in parameter count and
LoRA rank8) were compared among each other.

In order to facilitate systematic analyses, the finetuning results of three differently-sized
LLaMA-2 models at various LoRA ranks were prepared. The specific finetuning imple-
mentations performed for the preparation of these results involved finetuning the 7b, 13b,
and 70b parameter count versions of LLaMA-2, where the 7b version was trained with
LoRA ranks from r = 1 to r = 64, the 13b version was trained with ranks from r = 8 to
r = 64, and the 70b version was trained with r = 32 and r = 64, each in increments of
powers of 2. To further promote comparable results between models trained at a given
parameter count with differing LoRA rank, adapter weight matrices are initialized such
that their rows are pooled from the rows of the largest initialized weight matrix (r = 64).
This ensures that the image of a smaller initialized adapter weight matrix is always a
subset of the image of the largest matrix.

4.1 Module description performance analysis

The performance of finetuned models can be measured on the basis of model-generated
module description accuracy, since this task is directly linked to the amount of information

8Only models sharing a common parameter count can be used as a basis for subspace analysis, since
differences in parameter count translate to differences in context length and thereby lead to differently
dimensioned adapter matrices.
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stored in adapters of various dimensions. We thus generate module descriptions for
finetuned models of all proposed parameter counts and LoRA ranks using all modules
contained within the training data, and subsequently measure the BLEU scores of these
generated descriptions with respect to the genuine module description. Resulting scores
are presented visually and in the form of relevant statistics for evaluations that both
include and exclude evaluation samples, as these are samples on which the models are not
finetuned. For the visual presentation, we choose to measure the cumulative BLEU score
occurrence over the BLEU value range [0, 1] for a given sample count n ∈ N according to
the following definition:

F (x) =
n∑

i=1

χi(x), x ∈ [0, 1],

χi(x) :=

{
1 if BLEU(Ŝi, Si) ≤ x,

0 otherwise,

where Ŝi and Si are the i-th model-generated and genuine module descriptions, respec-
tively. For the statistical evaluation, we provide an overview of metrics including mean
BLEU score, standard deviation on BLEU scores, number of perfect scores, i.e., gener-
ated module descriptions which precisely match the genuine module description, as well
as final training loss.

After evaluating BLEU scores for each model-generated module description, we analyze
the worst performing module descriptions for their statistical characteristics, with par-
ticular focus on tokenized sequence length, as well as for their common traits.

4.2 Adapter difference analysis

The extent of the change in adapter matrices as a result of finetuning can be quantified in
a variety of ways. We opt to visualize the difference between finetuned adapter matrices
and their respective initialized states graphically (we refer to these differences as finetuned
adapter deltas in our work for simplicity), in addition to evaluating statistics pertaining to
the absolute change per adapter matrix element induced by finetuning. We then move on
to visualize the distribution of singular values of finetuned adapter deltas, which provides
insight regarding the density of information contained in lower-dimensional approxima-
tions of learned adapter adjustments. Finally, we evaluate the performance of a model
with adapters defined as the sum of truncated finetuned adapter deltas and respective
adapter initializations, while also drawing comparisons to a model with adapters orig-
inally finetuned with the truncated dimensionality. Truncation is performed using the
truncated SVD. We opt to truncate finetuned adapter deltas and add the result to the
respective adapter initialization rather than truncating finetuned adapters themselves,
because, for the A LoRA adapter specifically, while the singular value distribution of
finetuned adapter deltas is heavily skewed toward a small subset of large singular values
(see Figure 11), the singular value distribution of finetuned adapter matrices has a consid-
erably larger minimal baseline, making later singular values less negligible (see Section F
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of the appendix). It should be noted that for the B LoRA adapter, both methods of
truncation are equivalent, since these adapters are zero-initialized. However, for the A
factor, which is randomly initialized, the distinction regarding truncation method is of
significance. This can be verified by considering finetuned adapters as the sum of matrices
representing finetuned adapter deltas and respective initialized states ∆A+A0, where the
initialized states can be viewed as some noise matrix A0 ∼ U(− 1√

d
, 1√

d
), where d is the

pre-trained model dimension and U(− 1√
d
, 1√

d
) is a uniform distribution on the interval

[− 1√
d
, 1√

d
] according to the Kaiming initialization method described in Section 2.3. As

such, the variance of this “noise” equals 1
3d
, a magnitude comparable to that of the values

found in finetuned adapter deltas themselves (see Figure 9). Thus, the singular value
decomposition of finetuned adapters is heavily influenced by the adapter’s respective ini-
tialization, leading to less accurate truncated SVD approximations. By only truncating
the finetuned adapter deltas and adding the result to the respective adapter initializa-
tions, we bypass the influence of this noise and produce more accurate finetuned adapter
approximations.

4.3 Subspace analysis

Subspaces can be compared in a multitude of ways. The authors of LoRA elect to use a
measure based on the Grassmann distance to assess subspace similarity (Hu et al. 2021,
Section 7.2). Other options include the cosine-sine (CS) decomposition, which computes
Q-Blocks with highly related singular value decompositions (Golub and Van Loan 2013,
Chapter 2.5.4). We follow the procedure of subspace analysis employed by the LoRA
authors.

In the case of the Grassmann distance δ(·), the “distance” (or, more precisely, metric on
the Grassmannian) between two linear subspaces A ∈ Gr(i, N) and B ∈ Gr(j,N), where
Gr(k,N) is defined to be the set of all k-dimension linear subspaces of RN , is defined
using the principal angles θk for these subspaces:

δ(A,B) :=

√√√√
min(i,j)∑

k=1

θ2k ∈ [0,
π

2
).

Principle angles can be calculated using the principle vectors âi, b̂i of the compared
subspaces, where principal vectors are defined to be unit vectors within the spans of
their respective bases that have minimal angle between them and are orthogonal to each
other:

âTk b̂k maximal with ∥âk∥ = ∥b̂k∥ = 1 and âTk âl = b̂Tk b̂l = 0 ∀k ̸= l.

The principle angles are then defined as the inverse cosine of the inner products of the
principle vectors θk := arccos âTk b̂k. In practice, principal angles can be extracted from
the singular values computed in a singular value decomposition MT

AMB = UΣV T on the
product of the matrices MA, MB acting as bases for each subspace. The principle angles
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are then given by the inverse cosine of the singular values θk := arccos σk (defined along
the diagonal of Σ).

The subspace similarity measure employed by the authors of LoRA uses a slightly modi-
fied version of the Grassmann distance, equivalent to the following:

ϕ(A,B, i, j) = ψ(U i
A, U

j
B) =

1

p

p∑

k=1

σ2
k,

where p = min(i, j), and the practical computation is performed using the left singular
vectors instead of the singular values:

ϕ(A,B, i, j) :=
∥U iT

A U j
B∥2F

p
∈ [0, 1], (4.1)

where Uk represents the matrix containing columns of U corresponding to the top k
singular vectors. Here, a similarity score ϕ(·) of 1 indicates complete subspace overlap
and a score of 0 indicates complete separation.

Since the subspace analysis is performed on the products W of adapter matrices A, B
with W = BA, and these products share the substantial dimensionality d× d of the pre-
trained weight matrices, a more efficient method of computing the required left-singular
matrices Uw that involves the SVDs of the factors A and B is implemented. Given the
decomposed matrices Ua, Σa, V

T
a and Ub, Σb, V

T
b resulting from an SVD on the matrix

factors A and B, respectively, the left-singular matrix Uw of their product W can be
computed as Uw = UbUc, where Uc is the left-singular matrix resulting from an SVD on
the matrix C = ΣbV

T
b UaΣa. Due to the sign ambiguity of the SVD, the instance of the

left-singular matrix Uw computed by this method may contain differently signed columns
from the instance computed by a regular SVD on the product W , but this is not relevant
to the result of the modified Grassmann distance because of the Frobenius norm.

We aim to reproduce the results obtained by the authors of LoRA, who first analyze
adapter subspaces in order to determine to what degree a subspace spanned by the
top i ∈ N singular vectors in the left-singular matrix of a lower-rank weight update is
contained by the subspace spanned by the top j ∈ N singular vectors in the left-singular
matrix of a higher-rank weight update (Hu et al. 2021, Section 7.2). We follow part of
the procedure employed by the LoRA authors and implement a comparison of subspaces
stemming from the finetuned module W = BA, i.e., the product of the two finetuned
adapters of a LoRA module, for the query projection of LLaMA-2-7b finetuned with rank
r = 8 and r = 64, respectively. We further take advantage of the insight provided by Hu et
al. 2021, Section H.1, which demonstrates that conclusions hold regardless of which model
layer is analyzed, and examine the first layer (out of 32) of the finetuned models. We then
follow the procedure employed by the authors of LoRA regarding analysis of subspace
similarity between different randomly seeded finetuning implementations of LLaMA-2-7b
with r = 64, by again examining subspaces stemming from the finetuned module for the
query projection in the first layer.
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5 Results

We detail the results obtained from each analysis in this section.

5.1 Module description performance analysis

The measure of cumulative BLEU score occurrence based on model-generated module
descriptions is presented in Figure 8 for all proposed parameter counts and LoRA ranks
used for finetuning LLaMA-2-7b, as well as for score assessment both including and ex-
cluding evaluation samples. Models are labelled in the form “p-r”, where p and r are the
parameter count and LoRA rank of a finetuned model, respectively. Since the cumula-
tive BLEU score measure quantifies the number of module descriptions associated with
a BLEU score up to a certain value, curve progressions that start off low and rise when
nearing the upper bound of the domain are indicative of higher relative performance. A
theoretically optimal progression takes the form of the shifted scaled Heaviside step func-
tion n ·Θ(x−1), where n is the number of evaluated samples, as this involves all samples
producing perfect BLEU scores. From the figure, it can be observed that the cumula-
tive measure of scores excluding evaluation samples, which comprises 120 fewer samples
than the full training data, essentially shifts the measure of cumulative BLEU score oc-
currence including evaluation samples downward, with no impact to the performance of
models relative to each other. Though this is not particularly surprising, it is indicative
of uniform “extrapolative capabilities”, i.e., the ability to produce accurate descriptions
for modules not contained in the training data, across all finetuned models. The scores
produced by foundation models, labelled by “-0” suffixes, yield a measure of baseline
module description performance and provide a point of reference for the evaluation of
finetuned model performance.

The statistical evaluation of measured BLEU scores is presented in Table 7. From this,
it can be observed that mean score and number of perfect scores are strongly correlated
(R ≈ 0.99 for excluded evaluation samples), while also both being moderately inversely
correlated to final training loss (R ≈ −0.7 to mean score for excluded evaluation sam-
ples, and R ≈ −0.6 to number of perfect scores). However, final training loss also appears
to be tied to parameter count directly to some degree (R ≈ −0.85), supported by the
presence of disproportionately low final training loss values relative to mean score and
perfect score count for 70b finetuned models. This observation is indicative of an increase
in performance for models finetuned at higher parameter counts on the primary learning
task, i.e., module denomination, which is not included as part of the BLEU score analysis,
but is reflected in magnitude of the final training loss. The BLEU score standard devia-
tion is generally consistent, taking on lower values when excluding rather than including
evaluation samples, and taking on consistently low values for foundation models.

Regarding relative model performance, a non-monotonic progression in performance for
increases in LoRA rank and parameter count can be observed in both Figure 8 and Ta-
ble 7. Contrary to the baseline expectation, increased rank and parameter count were
not observed to consistently lead to improved performance in our case. Instead, model
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Figure 8: Cumulative BLEU score occurrence

performance, while trending upward, fluctuates as the LoRA rank is increased. For ex-
ample, the 7-16 and 7-64 models are both dominated by multiple models finetuned at
lower ranks. Similarly, model performance trends upward as the parameter count is in-
creased, but shows notable fluctuation, particularly in the case of models finetuned at the
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Finetuned
model

Mean Std. dev. Perfect
scores

Final
training lossFull No eval Full No eval

7-0 0.12 0.13 0.08 0.08 0 NA
7-1 0.65 0.74 0.38 0.35 265 0.37
7-2 0.72 0.82 0.35 0.29 314 0.35
7-4 0.74 0.85 0.35 0.28 352 0.32
7-8 0.75 0.86 0.36 0.28 363 0.32
7-16 0.72 0.83 0.36 0.3 317 0.32
7-32 0.8 0.92 0.33 0.21 404 0.27
7-64 0.74 0.86 0.35 0.26 345 0.31
13-0 0.12 0.12 0.08 0.08 0 NA
13-8 0.74 0.86 0.34 0.26 328 0.28
13-16 0.8 0.93 0.33 0.19 403 0.27
13-32 0.79 0.92 0.33 0.21 410 0.27
13-64 0.85 0.98 0.3 0.1 477 0.27
70-0 0.13 0.13 0.08 0.08 0 NA
70-32 0.77 0.89 0.33 0.24 379 0.19
70-64 0.79 0.92 0.34 0.22 383 0.19

Table 7: BLEU score statistics

70b parameter count. For example, the 13-8 model is dominated by the 7-8 model, and
both the 70-32 and 70-64 models are dominated by multiple models finetuned at lower
parameter counts. An additional notable aspect of the data is the extreme statistical
similarity between the 7-32 and 13-16 models, which in fact share the exact same final
training loss. Explanations for these results could be provided by the Chinchilla scaling
law (Hoffmann et al. 2022), dataset-specific optima, or variation in training algorithms.
The Chinchilla scaling law suggests, that given a compute budget for Transformer lan-
guage model training, there exists an ideal relationship between model size and number
of training tokens for optimizing model performance, which scales proportionally as the
compute budget is adjusted (Hoffmann et al. 2022, Section 3.4). Since we vary model
size but keep our training arguments and dataset the same, sub-optimal performance for
larger models could be explained by this law. With LoRA rank as an additional fine-
tuning variable in our analysis, the existence of data-specific optima could also provide
an explanation. While the Chinchilla scaling law applies to LLM training, QLoRA fine-
tuning introduces additional variables that impact model performance. As such, there
may be data-specific optimal values or ratios for finetuning variables including, but not
limited to, parameter count and LoRA rank, which do not simply involve increasing these
parameters in order to improve performance. Finally, the natural statistical variation as-
sociated with the probabilistic nature of training algorithms executed during finetuning
could provide an explanation for the discussed results. This is supported by the observa-
tion that, for a single parameter count, performance can fluctuate in both directions as
the rank is increased, which, if not attributed to natural variation, necessitates a highly
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sensitive and unstable dependency between LoRA rank and model performance. In order
to investigate this possibility, LLaMA-2-7b was finetuned with r = 64 four additional
times using unique random seeds for training. Resulting model performance is presented
in Table 8. The performance measures display considerable variance despite utilizing
the same training arguments and dataset. For example, the number of perfect BLEU
scores ranges from 345, the amount yielded by the initial finetuning of LLaMA-2-7b with
r = 64, to 423, which constitutes the highest perfect score count out of all finetuned 7b
models. This variance in performance is not accompanied by an according variance in
final training loss, which is significantly more consistent, yielding a difference of approx.
6× 10−3 between the highest and lowest final losses. In general, the results support the
hypothesis that the primary source of fluctuation regarding model performance stems
from the statistical variance associated with probabilistic training algorithms executed
during finetuning, though this does not entirely rule out the effects of the Chinchilla
scaling law or data-specific optima.

Finetuned
model

Mean Std. dev. Perfect
scores

Final
training lossFull No eval Full No eval

7-64-0 0.74 0.86 0.35 0.26 345 0.31
7-64-1 0.79 0.91 0.34 0.24 406 0.31
7-64-2 0.81 0.94 0.33 0.19 423 0.31
7-64-3 0.76 0.87 0.34 0.27 364 0.32
7-64-4 0.77 0.89 0.34 0.24 379 0.31

Table 8: BLEU score statistics for randomly seeded trials

Based on the BLEU scores evaluated for performance analysis, we investigate properties
of the worst performing module descriptions in order to determine why some descriptions
perform significantly worse than others. We look at the 20 worst performing module
descriptions generated by the overall best performing finetuned model, which is LLaMA-
2-13b finetuned with LoRA rank r = 64, though we postulate, based on observation, that
the conclusions drawn from our investigation hold regardless of which finetuned model is
used, and that certain properties of the module descriptions used as training samples are
the main reason for poor performance on those descriptions. We first investigate the sta-
tistical characteristics of the worst performing module descriptions, presented in Table 9.
A key feature of the data is the mean sequence length, which is over 7 times as large as the
mean sequence length over the entire output training data (see Table 6), indicating that
long module descriptions are more difficult to learn effectively than shorter ones. This
is indirectly supported by findings from Liu et al. 2023, which suggest that performance
steadily degrades on longer contexts (Liu et al. 2023, Section 1). From a purely mathe-
matical standpoint, an increased likelihood of poor performance for long sequences can
be explained by the large number of tokens needed to be correctly predicted in sequential
fashion in order to produce an accurate response, as one incorrect token in the response
generally leads to incorrect tokens from that position onward. However, it can also be
observed from the table that there are sequences among the worst performing module
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descriptions which are not especially long, such as the minimum length sequence consist-
ing of 118 tokens. Since sequence length is thereby not a decisive property on its own,
we further investigate semantic properties of the descriptions yielding poor performance,
in order to ascertain the root cause of the discrepancy in performance.

Statistical characteristic Value
no. of sequences 20
mean sequence length 610.85
standard deviation of sequence length 211.49
minimum sequence length 118
maximum sequence length 946
25th percentile sequence length 609.75
50th percentile sequence length 657.5
75th percentile sequence length 699.5

Table 9: Statistical characteristics of the tokenized 20 worst performing module
descriptions

For the investigation of semantic properties, we output the 20 examined module descrip-
tions and compare them to their corresponding sample in the training dataset. With this,
we are able to make the initial observation that each model-generated description begins
accurately, and that poor performance can generally be attributed to either a premature
ending of the description or a series of inaccurate tokens following an arbitrary number
of accurate tokens which continues until the description is concluded. We present exam-
ples for both of these cases, demonstrating how both short and long responses can yield
poor performance in the process. The example with the shorter response stems from the
localeEdit module, and technically ends in a reasonable fashion in both semantic and
syntactic terms, but omits a tremendous portion of the module description by ending
prematurely. The model-generated module description is compared to the first part of
the corresponding genuine description in Listing 20. The omitted portion of the genuine
module description is represented by an ellipsis to save space.

The module localeEdit can be described as follows: Important! Please also read the
↪→ description on the subject of location=specific data in general (e.g. different
↪→ languages or calendars of different countries).

The module localeEdit can be described as follows: Important! Please also read the
↪→ description on the subject of location=specific data in the installation
↪→ documentation This module is used to create, maintain and manage location=
↪→ specific data. These can . . .

Listing 20: Model-generated (top) vs. genuine (bottom) short module description

The remaining example stems from the statturn module, where the finetuned model
begins hallucinating mid-way through its description in an unusual fashion. The model-
generated module description is compared to the corresponding genuine description in
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Listing 21. Since there is no mention of “Mr. X” in the training dataset9 used for fine-
tuning, the name must stem from prior knowledge of the LLaMA-2 foundation model.
For reference, Mr. X is a fictitious character from the “Resident Evil” video game series,
whom LLaMA-2 as well as any of our finetuned models can accurately describe when
prompted accordingly.

The purpose of the module statturn is as follows: This app . . . movements are referred
↪→ to as part consumption:Goods receipts . . .

The purpose of the module statturn is as follows: This app . . . movements are
↪→ monitored via the part consumption statistics (list view):Consumption/non=
↪→ consumption of a part . . . . Mr. X has carried out a parts consumption statistics
↪→ evaluation for you. You can now see which parts he thinks you have consumed
↪→ or have not consumed in which period. . . . Mr. X is convinced that you will now
↪→ be able to make use of the statistics in the appropriate context.

Listing 21: Model-generated (top) vs. genuine (bottom) long module description

No further consistent indicators of poor performance could be identified among the worst
performing module descriptions.

5.2 Adapter difference analysis

The difference between finetuned adapter matrices and their respective initialized states,
i.e., a finetuned adapter delta, is visualized for the A LoRa adapter of the query pro-
jection in the first layer of LLaMA-2-7b in Figure 9. In addition to quantifying the
general magnitude of changes in adapter matrix elements, the visualization facilitates the
observation of notable structural arrangements and patterns within the difference ma-
trix. Though not entirely clear from the figure, computation of finetuned adapter deltas
yielded multiple insights regarding the extent of changes in adapters incurred through
finetuning. One such insight pertains to the susceptibility of the A adapter initialization
to sign changes. Here, the probability of sign change lies at approx. 25% per matrix
element, varying slightly by parameter count and LoRA module. Further insights are
based on the results of subsequent analysis on the absolute change per matrix element in
finetuned adapter deltas.

In order to further quantify the learned adapter changes embodied by finetuned adapter
deltas, a statistical overview of the absolute change per adapter matrix element is pre-
sented in Table 10. Results are grouped by parameter count and LoRA module, as the
absolute difference per matrix element was most consistent across varying LoRA rank
and layer index. The low relative standard deviation values observable in the presented
statistics, which represent the standard deviation of the mean absolute differences per

9The only term related to “Mr. X” found in the training data is “Mr. Proper”, who is mentioned in
a single module.
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Figure 9: Difference between finetuned adapter matrix and initialized state

matrix element over all LoRA ranks and layers, are indicative of an adequate subdivi-
sion of variables for analysis. Modules containing the “mlp” prefix represent each of
the learned projections in the SwiGLU activation function found in the LLaMA and
LLaMA-2 foundation models (Ma, Fang, and X. Wang 2023, Figure 2). In general, it
can be observed that absolute differences per matrix element share relatively consistent
relationships between modules within each parameter count. For example, for the A
adapter, the mean absolute differences for the q proj, k proj, and down proj modules
are generally approximately equal within each parameter count, with higher parameter
counts producing lower mean values. Relationships between modules in the B adapter
appear less consistent by comparison, though a reduction in mean value for the higher pa-
rameter counts can still be observed, as well as reduced mean values in general compared
to the A adapter. Standard deviations appear fairly arbitrary, with the only arguably no-
table values being the particularly low standard deviations for the gate proj and up proj
modules of the B adapter in the 70b parameter count model. As a loose guideline, the
mean absolute difference per matrix element makes up approx. 1/4 of the length of the
interval on which the uniform distribution used for the random initialization of A is de-
fined. It is no coincidence that this value conforms with the aforementioned approx. 25%
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probability of sign change per matrix element in A. This correspondence can be under-
stood with the help of a few shortcuts when considering that 50% of all values in a given
zero-centered uniform distribution U(−a, a) fall into the interval [−a

2
, a
2
], and that each of

these values possesses an approx. 50% chance of undergoing a sign change given a mean
absolute change a

2
equivalent to 1/4 the length of the distribution interval, resulting in

an overall 25% probability of a sign change. The true underlying explanation is more
complex and is based on the exact distributions of both adapter initialization and adapter
differences/changes, which we leave to be understood in the Section G of the appendix.
As part of this explanation, based on our observation that adapter changes are roughly
normally distributed, we approximate the distribution of adapter changes using a zero-
centered normal distribution. The reason for normally distributed adapter changes could
be tied to the central limit theorem, which states that, under appropriate conditions, the
distribution of pooled sample means converges to a normal distribution as the number
of pooled samples approaches infinity. As a result, finetuned adapter elements are not
distributed uniformly like their initialization, and are instead approximately normally
distributed as well10. The elements of the finetuned adapter delta and corresponding
finetuned adapter of the factor A of the query projection in the first layer of LLaMA-2-
7b are visualized using 100-bin histograms over normal distributions scaled according to
the height of each histogram in Figure 10.

As a method for investigating the structural complexity of the evaluated matrix differ-
ences, the distribution of singular values of finetuned adapter deltas is evaluated and is
visualized using linear and semi-log plots for the singular values of the adapters of all
modules within LLaMA-2-7b finetuned with LoRA rank r = 64 in Figure 11. In order
to produce a comprehensive overview of the singular value distributions within the en-
tire model architecture, the per-index geometric mean of the singular value distributions
across all layers is computed for each adapter and visualized accordingly. For comparison
between ranks, an inset plot containing the respective singular values for LLaMA-2-7b
finetuned with r = 8, as well as a further inset plot providing a magnified view of the
first 8 singular values of the primary distribution (LLaMA-2-7b finetuned with r = 64),
is also provided in Figure 11. This comparison illustrates the significantly higher unifor-
mity in the distribution of singular values for the lower r = 8 rank, indicating that the
learned adapter changes at this rank are closer to the information-theoretical optimum
for the associated dimensionality. Concerning the relative progression of singular values
among the adapters of different modules, the curves of the singular value distributions
of all adapters exhibit high similarity, though variance in the magnitude of the first, i.e.,
largest, singular value of each adapter can be observed. For example, the first singular
values of the gate proj module exhibit high relative magnitudes, particularly in the case
of the associated B adapter, which possesses the largest singular value in general. It

10In the case of the B adapter, finetuned adapter elements are as normally distributed as their cor-
responding adapter changes, since B is zero-initialized. In the case of the A factor, the distribution of
finetuned adapter elements is augmented by the original uniform distribution used to initialize A, as well
as the mathematical constraints imposed on gradient updates, whose influence becomes clear from the
identical domain for both the adapter change and finetuned adapter element distributions in Figure 10.
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Parameter
count

Module
A B

Mean Std. dev. Mean Std. dev.

7b

self attn.q proj 1/114.84 1/1183.5 1/129.24 1/971.74
self attn.k proj 1/114.84 1/1157.64 1/121.25 1/775.09
self attn.v proj 1/130.62 1/818.8 1/164.6 1/1224.08
self attn.o proj 1/125.07 1/716.27 1/143.48 1/1090.65
mlp.gate proj 1/100.81 1/836.75 1/133.2 1/1386.86
mlp.up proj 1/111.81 1/903.31 1/140.14 1/1706.44
mlp.down proj 1/112.63 1/1031.52 1/142.87 1/1006.17

13b

self attn.q proj 1/122.42 1/1237.42 1/140.22 1/1123.45
self attn.k proj 1/121.76 1/1115.83 1/131.89 1/853.46
self attn.v proj 1/137.9 1/874.86 1/167.71 1/1076.53
self attn.o proj 1/130.17 1/710.06 1/149.84 1/881.47
mlp.gate proj 1/107.85 1/860.32 1/143.74 1/1656.51
mlp.up proj 1/120.52 1/950.46 1/152.18 1/1631.51
mlp.down proj 1/122.89 1/1006.03 1/155.26 1/971.87

70b

self attn.q proj 1/140.3 1/1307.91 1/163.48 1/1436.33
self attn.k proj 1/142.63 1/1188.7 1/165.08 1/1217.2
self attn.v proj 1/158.5 1/1452.13 1/202.73 1/1429.25
self attn.o proj 1/161.42 1/860.13 1/167.97 1/1000.01
mlp.gate proj 1/135.16 1/921.92 1/161.73 1/2418.23
mlp.up proj 1/151.08 1/1298.95 1/172.53 1/2393.57
mlp.down proj 1/143.65 1/1558.42 1/176.5 1/1541.35

Table 10: Absolute change per adapter matrix element

is further the case, partially observable from the inset plots, that ordering first singular
values by adapter yields the same result for both r = 64 and r = 8, except for the two
smallest entries, which are swapped. Regarding the composition of the singular value
distribution as a whole, the primary plotted distribution can be observed to comprise
a small number of significant singular values, while the majority of singular values are
negligible by comparison, exemplified by the linearity of the singular value curves found
in the semi-log plot in Figure 11. This is indicative of the potential feasibility of employ-
ing lower-dimensional approximations of finetuned adapter deltas, which motivates our
subsequent analysis of “truncated performance”, i.e., the performance of a model with
adapters defined as the sum of truncated finetuned adapter deltas and respective adapter
initializations.

Truncated performance for LoRA rank r = 8 is presented in comparison to the perfor-
mance of the corresponding untruncated r = 8 model in Table 11. A clear contrast in
performance can be observed, particularly regarding the number of perfect scores. The
difference in mean BLEU score, though significant, is not as substantial by comparison.
This indicates that the loss of information as a result of truncation more heavily impacts
capabilities regarding precise recall of information, rather than overall response accuracy,
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Figure 10: Histogram of adapter changes (top) and adapter elements (bottom) over
scaled normal distributions

i.e., the ability to respond with accurate portions of the queried module description. A
less considerable drop in performance due to truncation would leave the door open to
deriving multiple lower-dimensional adapters from a single finetuning implementation.
However, the results we present indicate that for the learning task we use as a perfor-
mance measure, truncated adapters do not represent a competitive alternative to adapters
conventionally finetuned at the truncated dimensionality.
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Finetuned
model

Mean Std. dev. Perfect
scores

Final
training lossFull No eval Full No eval

7-8-trunc 0.61 0.7 0.36 0.34 214 NA
7-8 0.75 0.79 0.36 0.34 363 0.32

Table 11: BLEU score comparison between truncated and unmodified adapters

5.3 Subspace analysis

Subspace similarity scores for the analysis on the finetuned module W for the query
projection in the first layer of LLaMA-2-7b finetuned with r = 8 and r = 64, respectively,
are visualized in Figure 12. The visualization is split into two heatmaps representing the
values of the upper and lower triangles of the subspace similarity matrix, respectively. The
subspace similarity matrix is constructed through computation of the subspace similarity
according to the measure defined in (4.1) for 1 ≤ i ≤ 8, 1 ≤ j ≤ 64. For clarity, the
colorbars for both triangle plots share the same scale. One clear difference with respect to
the results obtained by the authors of LoRA is the substantially lower degree of subspace
similarity we obtain for low values of i and j. In particular, the similarity scores for
i = 1, j ∈ {1, 2} do not exceed 0.1, whereas the corresponding scores in the LoRA
analysis are above 0.5 (Hu et al. 2021, Figure 3). This indicates that, contrary to the
conclusion the LoRA authors draw, models finetuned at LoRA ranks r = 1 or r = 2
perform notably worse than those finetuned at higher ranks in our case. Supporting this
claim, we have shown in Section 5.1 that LLaMA-2-7b finetuned with r = 1 performs
significantly worse than the same model finetuned with higher ranks (see Table 7). By
contrast, in the LoRA analysis, the performance of models finetuned with r = 1 is much
more comparable to (and, in some cases, better than) the performance of models finetuned
at higher ranks (Hu et al. 2021, Table 6). It should be noted that we do not implement
the same performance measure as the authors of LoRA, so the comparison of relative
performance with respect to LoRA rank isn’t entirely conclusive. Rather than BLEU
evaluation, the LoRA authors implement validation accuracy on the WikiSQL (Zhong,
Xiong, and Socher 2017) and MultiNLI (Williams, Nangia, and Bowman 2017) datasets.
However, the contrast in relative performance offers a strong indication that performance
at low ranks is tied to the downstream learning task, or, more specifically, the dataset
used to train the downstream learning task.

Aside from the discrepancy in similarity score for low values of i and j, our results for
subspace similarity between models finetuned with differing LoRA ranks generally align
with the results obtained by the authors of LoRA, indicating some degree of generality
for these results across different downstream learning tasks. Through their subspace
similarity analysis, the LoRA authors arrive at the same conclusion that we have already
reached through our adapter difference analysis, namely that the top singular vector
directions of finetuned adapters are the most useful. We demonstrate that this is the
case using the distribution of singular values in finetuned adapter deltas, but the subspace
similarities tell the same story. This is based on the observation that subspace similarity,
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Figure 12: Upper (top) and lower (bottom) triangle of subspace similarities according
to (4.1) for models finetuned with different LoRA rank
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while being relatively low for values of i and j in the lower triangle of the similarity
matrix, take on a high relative magnitude when slightly increasing j beyond these values,
i.e., taking a few more of the top singular vectors of the r = 64 module into account. After
this sharp increase, the similarity scores do not increase significantly for higher values
of j, indicating that the top singular vector directions of finetuned adapters convey a
higher proportion of information than what is conveyed by the remaining singular vector
directions, and that this phenomenon is amplified for adapters of models finetuned with
higher LoRA ranks.

Subspace similarity scores for the subsequent analysis on the finetuned module W for
the query projection in the first layer of LLaMA-2-7b finetuned with r = 64 using two
different random seeds for the training algorithm are visualized in Figure 13. Here,
the heatmap representing subspace similarity scores is based on the subspace similarity
matrix constructed for 1 ≤ i ≤ 64, 1 ≤ j ≤ 64.

Our results for subspace similarity between models finetuned with differing random seeds
generally align with those obtained by the authors of LoRA across the board. The results
reinforce the consistently demonstrated notion that the top singular vector directions of
finetuned adapters are the most useful, since the highest degree of similarity is found
when using a small number of top singular vectors from one model in conjunction with
a large number of singular vectors from the other model. This implies that a significant
portion of information conveyed by the adapter singular vector directions in their entirety
is reflected in just a small number of the corresponding top singular vector directions. The
heatmap is darkest along the diagonal due to the lowest possible ratio (1:1) of singular
vectors from each model being present for subspace overlap. For all scores not on the
diagonal, i.e., wherever i ̸= j, there is a heightened contribution of singular vectors by
one of the models, leading to a higher degree of overlap than in the case where both
models contribute min(i, j) singular vectors. This, by extension, explains why, for a fixed
i or j, the similarity score goes up as the larger of the two variables is increased, as this
strictly adds to the expanded subspace information which is relevant to the unaltered
subspace.
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6 Discussion

There are many key takeaways stemming from the results of our analysis. Though gener-
alized conclusions regarding finetuning outcomes cannot necessarily be inferred from our
results alone, some takeaways likely apply to many different finetuning implementations,
particularly those with similar learning tasks and/or training data structured similarly
to that which we use. The perhaps core takeaway is that, for our purposes, a larger
LLM is not synonymous with higher performance. This is significant, since the hardware
requirements for finetuning a 70b model with QLoRA are vastly different from those
for finetuning a 7b or 13b model, which can be finetuned on a single consumer-grade
graphics card. Thus, having the peace of mind to finetune lower parameter count LLMs
while attaining comparable or, in some cases, higher performance than larger LLMs (see
Table 7), provides benefits regarding cost, training time, and CO2 emissions. Another
key takeaway is that the fluctuation in performance due to the probabilistic nature of
training algorithms executed during finetuning is not to be overlooked, and could be sig-
nificant enough to warrant multiple finetuning implementations depending on personal
needs. Upon investigating the worst performing model-generated module descriptions, we
identified that samples with high sequence lengths have an increased likelihood to yield
poor performance. Using the singular values of finetuned adapter deltas, we have also
demonstrated the possibility for the existence of task-specific information-theoretically
optimal LoRA ranks for finetuning. This is based on the observation of a significantly
steeper descent in singular values for rank r = 64 when compared to r = 8. However, it
is important to note that an information-theoretical optimum does not imply maximal
information, and that higher LoRA ranks are still generally tied to higher performance
for the learning task and ranks we analyze. We reinforce the notion of information-
theoretically optimal LoRA ranks by demonstrating the heightened importance of the
top singular vector directions of finetuned adapters using analysis of subspace similarity.
Our subspace analysis is able to reproduce many of the results obtained by the authors
of LoRA, though a discrepancy in results regarding subspace similarity between adapters
of models finetuned with different LoRA rank when measuring with very few left singular
vectors indicates that the relative performance of models finetuned at low ranks is depen-
dant on the employed training data. As such, high-performance models cannot reliably
be finetuned with exceedingly low LoRA rank. We recommend the rank employed by the
authors of QLoRA, namely r = 64, as a reasonable starting point, particularly given the
minor reduction in training time (< 3% difference between r = 64 and r = 1) associated
with finetuning using a lower rank.

Though the results of our analysis paint a relatively clear picture of general finetuning
outcomes and corresponding performance for our secondary learning task, the primary
learning task, i.e., denomination of classix modules, was not lost from focus after observ-
ing poor performance for this task using a heuristic approach. The classix AI team would
have preferred better outcomes for the primary learning task, but the denomination of
modules is inherently a classification task, and must be learned accordingly. To this end,
propositions for finetuning implementations more suitable for this learning task were con-
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sidered, including limiting the tokens responsible for module names in model responses to
genuine classix modules and preparing a classification finetuning implementation using
selected portions of module descriptions as input and module names as labels.

Limiting the tokens that make up the module name in a model response can be per-
formed by first adding all classix module names to the tokenizer vocabulary as respective
tokens and resizing the token embeddings in the foundation model. For reference, this
can be achieved in Python using the transformers module, displayed in Listing 22 for
a given tokenizer and foundation model. Here, new toks is a variable containing a list
of strings representing the tokens to be added to the vocabulary. In addition to pre-
sumably observing an immediate improvement in module denomination capabilities after
finetuning with the added tokens, model responses can be constrained such that during
the sequential process of output token generation, the first output vector responsible
for module denomination is truncated to contain only indices of the new tokens. This
way, the probability space resulting from this truncated vector represents probabilities
for genuine classix modules, specifically.

1 tokenizer.add tokens(new toks)
2 model.resize token embeddings(len(tokenizer))

Listing 22: Adding custom tokens to a tokenizer vocabulary in Python

Alternatively, a different finetuning approach tailored to classification can be imple-
mented. A key difference in such an implementation involves the use of an encoder-only
model, instead of the decoder-only models we use for our analysis. Additionally, outputs
within the text classification training dataset must come in the form of labels, i.e., numeric
ids, denoting module names, instead of conversational response text. Based on exper-
imental implementations using the BERT model distilbert-base-uncased and a dataset
containing module descriptions as input and ids representing module names as output, a
significant improvement in module denomination performance was able to be observed.
However, since each classix module is identified by a single description, the initial dataset
comprised only one sample per label (630 samples in total), which is highly unusual for
a classification task. Thus, further experimental implementations were conducted using
a dataset generated by prompting LLaMA-2-7b-chat to produce three realistic module
name queries per module description. This broadened the improvement in module de-
nomination performance (> 90% accuracy on heuristic test data), reinforcing the notion
that finetuning for text classification is a more suitable approach given our learning task
of module denomination.
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7 Conclusion

Despite module denomination performing below expectations, our findings leave the clas-
six AI team with the desire to continue finetuning in order to achieve results better
aligned with initial visions and expectations, while also providing a foundation for per-
forming necessary finetuning procedures more effectively and efficiently. This opens the
door to finetuning with new methods and models that are most suitable for the pro-
posed learning task. In our case, a classification finetuning approach using encoder-only
models provides a likely next step for achieving higher performance regarding denomi-
nation of classix modules. Regardless of the learning task, our findings support the use
of lower parameter count LLMs for finetuning, based on the favorable trade-off involving
slight decreases in performance for substantial benefits regarding expenditure of time and
computational resources.
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A JSON Format of Parsed Documentation

articles.json:
{

”articles”: ParsedArticle[]
}
ParsedArticle:
{

name: ’Articles for sale’, // Header of article
raw: ’<h2>Articles for sale</h2><ul>...’, // HTML of article
text: ’Articles for sale...’, // All HTML tags removed from article
url: ’https://appswarehouse.de/en AppsWH saleItem’,
module: ’saleItem’, // Module name
description: ParsedText
links: // Links listed after article header
[

{link: ’#description’, description: ’Description’},
...

],
blocks: Block[],

}
Block:
{

name: ’Specification numbers for sales items’, // Header of block
raw: ’<h4>Specification numbers for sales items</h4><p>...’
text: ’Specification numbers for sales items The sales article role...’,
description: ParsedText
// Optional parameters

}
ParsedText:
{

text: // Plaintext without HTML tags
raw: // Original HTML if differs from text

}
Listing 23: JSON format AppsWarehouse
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B Full list of defined finetuning parameters

python3 qlora.py ==model name or path meta=llama/Llama=2=7b=hf ==use auth
↪→ ==output dir /workspace/analysis/alpaca=2=7b=r64 ==logging steps 10 ==
↪→ save strategy steps ==data seed 42 ==save steps 500 ==save total limit 40
↪→ ==evaluation strategy steps ==eval dataset size 128 ==max eval samples 100
↪→ ==per device eval batch size 1 ==max new tokens 32 ==
↪→ dataloader num workers 3 ==group by length ==logging strategy steps ==
↪→ remove unused columns False ==do train ==do eval ==do mmlu eval ==
↪→ lora r 64 ==lora alpha 16 ==lora modules all ==double quant ==quant type
↪→ nf4 ==bf16 ==bits 4 ==warmup ratio 0.03 ==lr scheduler type constant ==
↪→ gradient checkpointing ==dataset data/en articles alpaca.json ==
↪→ source max len 1024 ==target max len 1024 ==per device train batch size 1
↪→ ==gradient accumulation steps 16 ==max steps 1875 ==eval steps 187 ==
↪→ learning rate 0.0002 ==adam beta2 0.999 ==max grad norm 0.3 ==
↪→ lora dropout 0.1 ==weight decay 0.0 ==seed 0

Listing 24: Finetuning parameters
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C Derivation of definitions surrounding uniform Kaim-

ing distribution

Given an original dimension d, the fan is defined as:

fan = d,

the gain is defined as:

gain =

√
2

1 +
√
5
2 =

1√
3
,

and std is defined as:

std =
gain√
fan

=
1√
3d
.

The resulting positive bound is then computed as follows:

bound =
√
3 · std =

1√
d
.

This value yields the upper and lower bounds for the resulting zero-centered (and thereby
symmetric) uniform distribution:

(−bound, bound) =
(
− 1√

d
,
1√
d

)
.

The mean of a symmetric continuous uniform distribution is 0 by defintion, and the
variance is defined as follows:

(boundupper − boundlower)
2/12 =

bound2

3
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D Exemplary Auto-Regressively Finetuned Model In-

ferences

Enter prompt: I want to delete a sales order.

Network output: You can select a sales order to be deleted by clicking on the button ”
↪→ Sales order” and then on the button ”Edit = Delete sales order”. When you are
↪→ sure that you want to delete the selected sales order, you can press the print
↪→ button and the system will also print the delivery note and the warehouse order
↪→ accordingly. The action ”Delete” can only be performed if the respective
↪→ documents have not yet been printed. Position window: This window is used to
↪→ maintain the sales order. Module name: salesorddel.mod. Classes: =.

Enter prompt: By double=clicking

Network output: on a list entry, the corresponding document can be edited. The
↪→ context menu for editing can be called up from the right mouse button: Context
↪→ menu. Module name: loggiwfl.mod. Classes: CX TRANSACTION.

Enter prompt: Cost element evaluation

Network output: per cost object: For individual cost units = separated by cost elements
↪→ = the accumulated costs posted in financial accounting are displayed. The
↪→ financial accounting costs can be delimited according to posting periods ”from=
↪→ to” or in total up to one posting period. The cost elements can be output either
↪→ as a list of one another or structured by means of a classification term (e.g. P&
↪→ L, BWA, etc.). Module name: cobjrept.mod. Classes: CX MONITOR.

Enter prompt: What are suppliers?

Network output: Suppliers are companies who perform services for you (e.g. have work
↪→ carried out). Input window: This window is used for maintaining suppliers. You
↪→ can select a supplier by entering the desired number in the Number field and
↪→ confirming with RETURN. If you want to call up the list window, you can
↪→ select the menu item ”Search”. List window: Used to list the suppliers. Selection
↪→ window: This window is used to select a supplier. Module name: supplier.mod.
↪→ Classes: CX SUPPLIER. Security: In addition to restricting access rights via
↪→ the class and its data fields, the module can be restricted in its use via some of
↪→ the received messages. Module name: supopedt.mod. Classes: CX SUPPLIER.
↪→ Security: In addition to restricting access rights via the class and its data fields,
↪→ the module can be restricted in its use via some of the received messages.
↪→ Module name: supofac.mod. Classes: CX SUPPLIER ACCOUNT.

Listing 25: Exemplary model inferences
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E Pool of Typical Phrases

”query”: {
”questions”: [

”What is the name of this {textType}?”,
”How is this {textType} called?”,
”Which {textType} is being described?”,
”Tell me the name of this {textType}.”,
”Name this {textType}.”,
”What is the name of the {textType} being described?”,

],
”responses”: [

”The name of this {textType} is {name}{inMod}.”,
”This {textType} is called {name}{inMod}.”,
”The {textType} being described is {name}{inMod}.”,
”This {textType} is named {name}{inMod}.”,
”This {textType} is {name}{inMod}.”,

]
},

”describe”: {
”questions”: [

”What is the purpose of the {textType} {name}{inMod}?”,
”What is the {textType} {name}{inMod} used for?”,
”What purpose does the {textType} {name}{inMod} serve?”,
”Describe the {textType} {name}{inMod} for me.”,
”Explain the purpose of the {textType} {name}{inMod}.”,

],
”responses”: [

”The purpose of the {textType} {name}{inMod} is as follows: {description}.”,
”The {textType} {name}{inMod} is used for the following: {description}.”,
”The {textType} {name}{inMod} serves the following purpose: {description

↪→ }.”,
”The {textType} {name}{inMod} can be described as follows: {description}.”,
”The purpose of the {textType} {name}{inMod} is the following: {description

↪→ }.”,
]

}
Listing 26: Typical phrases

76



F Singular values of finetuned adapters
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Figure 14: Singular values of adapters
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G Derivation of correspondence between mean ab-

solute difference in finetuned adapter delta and

probability of sign change per adapter element

For the derivation of the correspondence between mean absolute difference in a finetuned
adapter delta (also mean absolute adapter change) and probability of sign change per
adapter element, we use the elements of the adapter initialization A0 and adapter change
∆A matrices for the A adapter of the query projection in the first layer of LLaMA-2-
7b, in addition to defining approximate probability distributions for the values of these
matrices, which we use for theoretical calculations.

As a practical guideline, we first establish the mean absolute adapter change relative to
the range of initial adapter values by calculating the mean value in |∆A| and dividing it by
the length of the corresponding adapter initialization interval 1

64
−
(
− 1

64

)
= 1

32
. This gives

us a relative mean absolute change of approx. 0.1976. We then measure the rate of sign
change by iterating over the elements of A0, adding a randomly sampled value from ∆A
to each element, and assessing the proportion of elements that underwent a sign change
as a result of the addition. This proportion was evaluated as approx. 0.1737 ± 0.0005,
varying slightly depending on the random sampling. For reference, the actual rate of sign
change for the examined adapter was approx. 0.1997. This discrepancy most likely has
to do with constraints imposed on gradient updates, which, for example, clip weights to
prevent them from exceeding certain bounds.

For the theoretical derivation, we establish approximations for the relevant probability
distributions. The probability distribution for the adapter initialization can be approxi-
mated with the uniform distribution U

(
− 1

64
, 1
64

)
without further thought, since the true

initialized values stem from a uniform Kaiming distribution on the same interval. The
probability distribution for the adapter change is approximated with the normal distri-
bution N (0, 0.00782) based on inspection of the data. Using these approximations, the
probability density functions fU(u), fN(n) are defined for the uniformly and normally
distributed random variables U and N , respectively, as follows:

fU(u) =

{
32 for x ∈ [− 1

64
, 1
64
],

0 otherwise,

fN(n) =
1

0.0078
√
2π
e−

n2

2·0.00782 .

The calculations used to determine theoretical values for mean absolute change and prob-
ability of sign change involve specific application of these distributions. For the mean
absolute change, the expected value of the folded normal distribution fM(n) = 2fN(n)
based on the random variable M = |N | is computed:

∫ ∞

0

nfM(n) =

√
2

π
σN ≈ 0.0062,
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where σN is the standard deviation of the normally distributed random variable N . The
resulting value is then divided by the length of the adapter initialization interval 1

32
in

order to obtain a theoretical relative mean absolute change of approx. 0.1992.

For the probability of sign change, the probability of a positive value in U being met with
a negative value in N of greater absolute value is calculated using the joint probability
distribution of the two random variables. Due to the symmetry of both random variables,
the result for the positive to negative transition can be doubled to produce the total
probability of sign change, leading to the following calculation:

2

∫ ∞

0

∫ −u

−∞
fU(u)fN(n) dn du.

This leads to a theoretical probability of sign change of approx. 0.195, which approxi-
mately corresponds to the theoretical relative mean absolute change.
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