
CATCHing: Content-Based Caching of

Build Artifacts and Test Results

Yasuf Haidaryar, Marvin Petz, Philip Suskin,
Arshia Khademian, Ahmad Azkour

March 2022

Abstract

The typical workflow in software development involves frequent re-
building of projects. In particular, rebuilding often occurs in order to
execute tests that ensure the continuing validity of selected parts of the
project in question. As a result, even changes pertaining only to a small
part the codebase can result in rebuilding the entire project, leading to
large rebuild times that disrupt the project workflow significantly.

In this paper, we offer the CATCHing approach as a solution to the
aforementioned issues. CATCHing is comprised of two key components,
one of which generates hashes based on the AST of given source files to
represent their semantic state, and the other evaluating the last time of
semantic change of a source file through comparison of hashes generated
in the build process.

We evaluated the benefit that our implementation provides through
rigorous testing of the invocations of the compiler, linker, and archiver
while rebuilding various randomly generated C projects under CATCHing
in comparison to commonly used build systems. The generator for the
C projects in question was tested for the resemblance of its generated
projects to real-world projects in order to increase the reliability of our
test results.

The tests validate that under most circumstances, CATCHing saves a
significant amount of linker and archiver calls.

1 Introduction

Depending on the size of a software project, rebuild times can cut significantly
into the development process. In particular, changes that do not impact the
majority of the project result in a full project rebuild. Taking into account that
frequent rebuilding and testing is routine in most projects, rebuilding greatly
impedes the efficient workflow of a developer. Our approach, CATCHing, solves
this problem by generating a semantic-fingerprint [6] through hashes created by
cHash [1], as these hashes uniquely represent a state of the AST (abstract syntax
tree) of a source file and can thereby (through comparison with the previous

1



hash of a given source file) be used to identify a significant change. Using these
two components allows us to rebuild targets if and only if the corresponding
source files have encountered semantically significant changes.

1.1 Story

As a software developer, one writes scripts which constantly require adjustments
and improvements. The applied changes require the project to be rebuilt, which
takes time. The larger a project becomes, the more time it takes to rebuild it,
even if the scope of the changes (the source files in which the changes were made,
as well as all dependent source files and targets) stays the same. This stands
in contrast to the goal of developers, where maximizing efficiency and thereby
saving time whenever possible is crucial to maintain an effective workflow. Re-
building projects is essentially equivalent to waiting and therefore wasted time,
which needs to be reduced wherever possible.

A lot of the modern software projects rely on compiled languages, which all
suffer under the same condition, namely that the projects have to be rebuilt
for every slight or significant change made to its code. Our team, among many
others, pose the question: is every recompilation necessary for the project to
run properly? If not, how can redundant compilation be minimized?

Compiling certainly is not unnecessary if the changes done to the source
code influence its functionality, but up to 97% of compiler invocations are re-
dundant [1] and therefore result in lost time and resources.

This sets the tone for our goal and contribution: we effectively reduce the
time spent for rebuilding by eliminating unnecessary compilations and linking
steps. But how can we even distinguish relevant from irrelevant changes made
to source code?

For this, we use the condensed state of a build artifact in the form of a
semantic fingerprint to dynamically evaluate which build steps are necessary.

2



2 System Model

Figure 1: Build Process

When describing our approach to speed up the building process of a project, we
have to define some terms. A build step describes either the action of compiling
a source file to an object file, adding object files to a static library or linking
object files to create an executable.

In order to organize these build steps, we need a build system. Its primary
function is to build or rebuild a software project with the simple press of a
button. It has to run the necessary build steps in the correct order to create
valid binaries, which includes rebuilding objects files that depend files that have
been changed.

If a source file contains functions, structures or variables from other files,
it becomes dependent on those files and has to include them. In that sense,
static libraries are also dependent on the object files they include, as changing
those will also change the library. Depending on the overall structure, this may
include a significant part of the entire project which is why we want to avoid
redundant rebuilds whenever possible with our solution.

In addition to this, the build system outputs additional files, like reports
or log files, which may be insightful for developers. These files are called build
artifacts.

3



3 The CATCHing Approach

In general, a build system has to execute a build step, which deterministically
produces the same output if started with the same inputs, only if (a) the des-
tination artifact does not exist, or (b) an input artifact has actually changed.
However, the timestamp-based (re-)compilation regime, which was introduced
by make [8], is still the state of the art: if any input artifact (e.g., source file) has
a newer UNIX timestamp than the destination artifact (object file), make invokes
the build step to (re-)create the destination. Hence, make over-approximates the
re-execute decision and often executes steps that will yield the same results.

With CATCHing, we provide a much stricter, and therefore faster, build
methodology that uses semantic fingerprints for its re-execute decision. In the
following, we will introduce semantic fingerprints at the example of cHash [1]
and describe how we make use of these fingerprints in a fingerprint-aware variant
of make, which we call Fpr-Make [6].

3.1 cHash

cHash is an extension of the Clang compiler and arguably the most important
building block of CATCHing. During the build process, cHash creates a hash of
every source file in the project. It is unique, because it focuses on the semantics
of the source code: instead of creating a hash on the syntactic level, cHash cre-
ates a hash over the Abstract Syntax Tree (AST) of every source file. Therefore,
the hash is unchanged if the AST is not affected (e.g., a comment is added or a
struct is declared but not used). Ideally, the hash will only change if the build
target changes after the build step. The hash is generated during compilation.
If the hash did not change, we can abort the build step before linking starts,
saving the most time consuming phase of the build process.

3.2 Fpr-Make

Fpr-Make is a modified version of the commonly known and used make [8],
implementing three extended attributes to the files generated during the build
process. The fpr-hash is evaluated during compilation by a pre-determined tool
with the capability of generating hashes from files, such as, in our case, cHash.
The fpr-time is defined by the ”true” last modification time of a file, which is set
for a given target after compilation of its source if and only if the hash generated
for the source differs from the hash it corresponded to before compilation. The
final extended attribute, fpp, is a boolean variable which signifies when the
interjected extended attribute modification is finished.

4



Figure 2: Semantic-Fingerprint-Make

As explained in Figure 2, if the source file already has an associated fpr-
time, Fpr-Make will compare it with the mtime (last modification time) of the
destination file. If the source file has no fpr-time, it will compare the mtime of
the source file with the mtime of the destination file. As such, Fpr-Make only
(re-)builds targets if their mtime is older than the fpr-time/mtime of the source
file.

3.3 Implementation

Porting cHash to use its generated hash during the execution of Fingerprint-
Make relies on modifying the extended attributes of the source file(s) compiled
by Clang with the accompanying cHash plugin, and using the Clang and cHash
binding for the build rules of all source files, as well as Clang with an additional
md5 hash generation for the build rules of all other files. These rules are written
into a Makefile that is executed by Fpr-Make. The method for executing a rule
for the compilation of a given source file is shown in Figure 3.

Figure 3: Compilation with Clang and cHash

5



3.4 Validating our implementation

To improve, test, and finalize the core of our project (merging cHash and
Fingerprint-Make), we required a method to test our findings on each of the
respective projects with the help of a trivial C project. One could create such
a kind of skeleton project by hand, but this idea was not practical and, more
importantly, not scalable. Instead, we developed a generator for this class of
projects, which created project structures with varying levels of complexity on
which to test the effects of cHash and Fingerprint-Make. Specifically, we wanted
to get accustomed to identifying when and why the hash generated by cHash
changed, based on the change in source code (i.e., adding a comment, adding
trivial code, making true semantic changes), as well as investigating the capabili-
ties of avoiding unnecessary recompilation of modules by using Fingerprint-Make
on a dummy generated Makefile.

4 Evaluation

We wanted to not just create a static example project for validation and test-
ing, but instead mimic the workflow of a real software project with frequent
changes and rebuilds. Therefore, we created a generator that creates a ran-
dom dependency graph and a corresponding mock project in C. By dependency
graph, we mean a description of the project structure based on which functions
(and thereby indirectly which modules and libraries) depend on each other. If
function A calls function B, then A is dependent on B. The project generator
takes a JSON file representing the dependency graph of the project and outputs
source files, header files and a makefile.

Combining these programs, we are able to create multiple projects with
arbitrarily many functions, modules and static libraries. The structure has to
feature at least one library containing at least one module, which is a unity of
a source file and a header file. The source files feature primitive functions and
global variables. These functions may call other functions from other source files
creating dependencies between modules from the same library or other libraries.

Furthermore, our generator creates executables calling the functions ran-
domly, just like a developer would. Since real software projects are often tested
each time they’re rebuilt, we also implemented an option to generate executables
mimicking these kinds of tests.

With our mock project set up, we created an additional layer of software
allowing us to introduce changes randomly and rebuilding the project after a
given number of changes. Our software either introduces comments to source
files, which do not change the final executable, ”soft changes”, which consist of
structs being added to header files but not used in any source files (this way,
we make a real change in code which has no effect on the AST), and ”hard
changes”, which change the behavior of the executables and require rebuilding
parts of the project.

We also implemented a feature in which batches of random changes are se-

6



quentially applied to two copies of a randomly generated project. After each
application of changes, the projects are rebuilt with Clang and CATCHing re-
spectively.

With this, our method for evaluation was ready to be applied. We generated
multiple projects of varying sizes and introduced the different types of changes
to them to observe CATCHing’s improvement.

We started with a larger project of 200 functions, 15 modules, 10 libraries
and 45 binaries and measured how often the project has to recompile, link or
archive any files. Using this, we determined how often redundant build steps
were detected and avoided. This can be observed in the following results:

Compiler

Linker

Archiver

1,484

0

0

1,484

4,446

835

Total number of calls

CATCHing
Clang

Comments are reliably detected and the build step was always aborted after
compilation across multiple test runs. In the above run, we sequentially intro-
duced 100 comments to the project and rebuilt it after every change.

Compiler

Linker

Archiver

986

0

0

986

4,468

856

Total number of calls

CATCHing
Clang

7



Soft changes were also reliably detected. As long as changes do not alter the
abstract syntax tree, no rebuilds are necessary. Once again, we introduced 100
changes.

Compiler

Linker

Archiver

1,549

3,688

98

1,549

4,471

884

Total number of calls

CATCHing
Clang

Although hard changes require rebuilds by definition, we were still able to
reduce the linker calls by up to 17%.

Compiler

Linker

Archiver

583

567

103

583

583

179

Total number of calls

CATCHing
Clang

We also observed that for larger projects with more dependencies, the system
has the largest benefit with respect to hard changes. A smaller project with 20
functions, 5 libraries and 8 binaries, like the one above, only yielded slight
improvements.

8



4.1 Random Dependencies

We set it as our goal to not just create hollow projects, but projects with true
structure and complexity that were comparable (or, at the very least, as realistic
as possible) to genuine C projects in regards to their call graph structure. This
involved consideration of parameters such as number of incoming dependencies,
number of outgoing dependencies, number of functions per module, and avoid-
ing/minimizing cyclic dependencies. A function dependency graph (call graph)
alone is, in general, not capable of modelling an entire C project. Our next
step was to create clusters (equivalent to modules) around nodes (equivalent to
functions) in the dependency graph and cluster groups (equivalent to libraries)
around said clusters, to reach the full extent of the C project architecture.

The randomly generated call graph is generated in the form of a directed
acyclic graph (DAG) derived from an adjacency matrix, which is generated by
setting 2 �

Ó
n elements of the lower diagonal of a n � n matrix (where n is

the number of functions to generate) to 1, while setting all other elements to
0. Following this, cycles are added randomly with a respective probability of
cycle creation (bernoulli) and cycle extension (binomial) for each edge. After
this, modules are generated around exclusive sets of functions, just as libraries
are generated around exclusive sets of modules. Figure 4 depicts an exemplary
dependency graph generated by the random dependencies project:

Figure 4: randomly generated dependency strcture with 10 functions, 3 modules,
and 1 library

9



To evaluate the ”realisticness” of graphs generated by this method, we com-
pared the number of in and out edges per node (function) with that of an
existing project, namely OpenSSL [9] 1.1.1m:

0 1 2 3 4 5 6 7 8

10
1

10
2

10
3

In edges count

(A
ve
ra
ge
)
o
cc
u
re
n
ce
s
in

p
ro
je
ct

Random Dependencies Project
OpenSSL

0 1 2 3 4 5 6 7 8 9

10
1

10
2

10
3

Out edges count

(A
ve
ra
ge
)
o
cc
u
re
n
ce
s
in

p
ro
je
ct

Random Dependencies Project
OpenSSL

We also had to make considerations toward the number of functions per
module. The two methods we adopted to group functions into modules were
cluster generation via PageRank as well as purely random grouping. To compare

10



the two, we evaluated the average cluster sizes per project under PageRank
and random grouping across 1000 projects with 7411 functions (the number of
functions used in the previous test):

0 200 400

0

50

100

150

Functions per Module

O
cc
u
re
n
ce
s
in

1
0
00

p
ro
je
ct
s

Page Rank

0 50 100

0

20

40

60

Functions per Module

O
cc
u
re
n
ce
s
in

10
0
0
p
ro
je
ct
s

Random

5 Discussion of our results

5.1 Random Dependencies

Upon further analysis of the in/out nodes, we recognize one major difference,
namely that the OpenSSL project doesn’t contain any functions with 0 in
edges (this can be imagined as a function that isn’t called by any function),
whereas the random dependecies project does. This is because of the fact that
the OpenSSL data by principle only contains functions which are also called,
whereas the random dependencies project is meant to be a project with the
necessary source code to generate libraries which most definitely can contain
surface level functions that are intended to be solely called externally. Aside
from this observation, the two graphs appear to be generally comparable and
lead to a satisfactory generation of functions and function dependencies.

Concerning the cluster generation, a major difference is observable between
PageRank and random generation. However, considering we didn’t make use
of weighted edges when connecting nodes, since function dependencies can be
generally viewed as ”weightless”, it is no surprise that PageRank yielded un-
usual results. To be precise, PageRank was much more polarized in its cluster
sizes, generally generating 1 large cluster alongside many miniscule ones, includ-
ing multiple single-node clusters, equivalent to a single-function module (which
is entirely possible, but not particularly desirable/realistic in large quantities
within one project). Therefore, we conclude that random clustering results in
more realistic project structures.

11



5.2 CATCHing

Our evaluation of compiler, linker, and archiver invocations has validated that
CATCHing can reliably detect changes that do not affect the abstract syntax
tree. Changes in the form of comments or declarations of variables will not
trigger recompilation. Even semantic changes to the code will result in less
redundant builds, especially when applied to a large project with many de-
pendencies, displaying the potential savings in time. In combination, this is
promising, as smaller changes/improvements in large projects will not be met
with a large time penalty in comparison to ordinary, unoptimized build systems.

6 Conclusion

All things considered, we present CATCHing with as a feasible method to effec-
tively reduce rebuild times and thereby greatly improve the overall software de-
velopment experience. Although results may vary among projects and software
environments, we conclude that the time overhead that arises from generating
and comparing semantic fingerprints is largely outweighed by the time won by
minimizing redundant build steps through the use of CATCHing, as long as the
project in question is not exceedingly small and the changes made to the source
code don’t affect an overwhelming majority of the entire project. In compar-
ison to state-of-the-art build systems, CATCHing is thereby shown to yield a
consistent benefit.

12



References

[1] Christian Dietrich, Valentin Rothberg, Ludwig Füracker, Andreas Ziegler
and Daniel Lohmann. ”CHash: Detection of Redunant Compilations
via AST Hashing”, Friedrich-Alexander Universität Erlangen-Nürnberg &
Leibniz Universität Hannover.

[2] Anonymous Authors. ”TASTING: Reuse Test-Case Execution by Global
AST Hashing”. EuroSys ’22, April, 2022, Rennes, France.

[3] Gregg Rothermel, Roland J. Untch, Chenguyun Chu and Mary Jean Har-
rold, 1999. Test Case Prioritization: An Empirical Study. In Proceedings of
the IEEE International Conference on Software Maintenance (ICSM ´99).
IEEE Computer Society, USA.

[4] H. K. N. Leung and L. White. 1989. Insights into regression testing (soft-
ware testing). In Proceedings. Conference on Software Maintenance -1989.
60-69. https://doi.org/10.1109/ICSM.1989.65194.

[5] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. IEEE Trans. Softw. Eng, 22,8 (Aug. 19696).

[6] Tom Kaiser. 08.2017. In Vermeindung redundanter neutübersetzungen durch
die weitergabe von semantischen Fingerabdrücken Universitiy of Leibniz
Hannover. (Aug. 2017).

[7] Farhad Ahmed Sagar. sept. 2016. In Cryptographic Hashing Functions -
MD5. https://cs.indstate.edu/ fsagar/doc/paper.pdf. College of Art and
Science. USA.(sept.2016).

[8] ‘GNU Make Manual - GNU Project - Free Software Foundation’. Accessed
15 March 2022. https://www.gnu.org/software/make/manual/.

[9] Welcome to the OpenSSL Project. C. 2013. Reprint, OpenSSL, 2022.
https://github.com/openssl/openssl.

13


