
The Birthday Problem

Relevant Formulas:
The probability of at least one match among m people is represented by Px (m) :  1 -

n ! / (n -m) !

nm

In[1]:= P[n_, m_] := 1 - (n! / (n - m)!) / n^m

?? P

Out[2]=

Symbol

Global`P

Definitions

P[n_, m_] := 1 -
n!

(n-m)! nm

Full Name Global`P

The probability that the mth person made the first match is represented by

px (m) : 
n ! / (n - (m - 1)) ! · (m - 1)

nm

In[3]:= p[n_, m_] := (n! / (n - (m - 1))!) * ((m - 1) / n^m)

?? p

Out[4]=

Symbol

Global`p

Definitions

p[n_, m_] :=
n! (m-1)

(n-(m-1))! nm

Full Name Global`p

The natural formula for the expected value is the cumulative product of the probability of each

event and its value: 
ia

b

i · px (i)

Printed by Wolfram Mathematica Student Edition

In[5]:= naturalExpected[n_] := Sum[m * n! * (m - 1) / ((n - (m - 1))! * n^m), {m, 1, n + 1}]

?? naturalExpected

Out[6]=

Symbol

Global`naturalExpected

Definitions

naturalExpected[n_] := ∑m=1
n+1 m n! (m-1)

(n-(m-1))! nm

Full Name Global`naturalExpected

The alternative formula for the expected value uses the cumulative probability of failure:

a +
ia

b

1 - Px (i)

In[7]:= expected[n_] := 1 + Sum[n! / ((n - m)! * n^m), {m, 1, n}]

?? expected

Out[8]=

Symbol

Global`expected

Definitions

expected[n_] := 1 + ∑m=1
n n!

(n-m)! nm

Full Name Global`expected

We can see that both expectation value formulas are equivalent via simplification:

In[9]:= FullSimplify[naturalExpected[x] == expected[x]]

Out[9]= True

However, the alternative formula is much more suitable for large calculations (efficiency and
avoiding underflow).

Calculations:
In[10]:= n = 365

Out[10]= 365

The link between expected value and probability:

We are interested in the link between the expected value and probability, which would equate to
asking:
We know we can calculate the probability of a match (at least one match) for any given number of
people in the room,

2 BirthdayProblem.nb

Printed by Wolfram Mathematica Student Edition

but what probability threshold do we need to reach before we can expect to have a match? - Not an
easy question.
Some may try to argue that the threshold lies at 50%, but there seems to be no apparent reason as
to why we should
expect a match when the chance of a match reaches 50%. We could argue the same for 75% or 90%
- it’s arbitrary.
But a well-defined threshold does exist - for every probability experiment, in fact - it’s simply the
probability of the expected value itself.
All we have to do in the birthday problem is calculate the expected value of people needed for a
match given n days in a year,
then calculate the probability of actually having a match with a room full of that many people.

In[11]:= N[expected[n]]

Out[11]= 24.6166

In[12]:= N[P[n, N[expected[n]]]]

Out[12]= 0.557151

We observe that our Px can be applied to non-integer values despite the birthday problem theoreti-
cally being a discrete probability experiment.
However, Mathematica can have some issues with underflow for px and Px for some non-integer
values (large fractions), so it’s helpful to define interpolated functions for both:

In[13]:= pInt = Interpolation[p[n, #] & /@ Range[n + 1]]

PInt = Interpolation[P[n, #] & /@ Range[n + 1]]

Out[13]= InterpolatingFunction
Domain: 1, 366
Output: scalar



Out[14]= InterpolatingFunction
Domain: 1, 366
Output: scalar



Still, we can trust that Px is correct even for non-integer values, as we get a nearly identical result
when using its interpolated counterpart:

In[15]:= N[PInt[expected[n]]]

Out[15]= 0.557151

This essentially means that we trust the gamma function, which is used for non-integer factorials,
so the same can also be said for px:

In[16]:= {N[p[n, N[expected[n]]]], N[pInt[expected[n]]]}

Out[16]= {0.0306359, 0.0306359}

Sadly, Mathematica can’t compute the numeric limit of this probability as the days in a year
approach infinity, but it seems to be very close to 54%.

In[17]:= Timing[N[Limit[P[x, expected[x]], x → 100 000]]] {"seconds elapsed", "calculated limit"}

Out[17]= {0.84375 seconds elapsed, 0.544837 calculated limit}

BirthdayProblem.nb 3

Printed by Wolfram Mathematica Student Edition

However, when setting the limit to infinity, Mathematica was able to find a much faster equation to
immediately calculate the probability threshold given n days in a year:

In[18]:= thresh[n_] :=

1 - (n^(-ⅇ^n * n^(-n) * Gamma[n + 1, n]) * n!) / ((n - ⅇ^n * n^(-n) * Gamma[n + 1, n])!)

?? thresh

Out[19]=

Symbol

Global`thresh

Definitions

thresh[n_] := 1 -
n-ⅇ

n n-n Gamma[n+1,n] n!

n-ⅇn n-n Gamma[n+1,n]!

Full Name Global`thresh

In[20]:= FullSimplify[P[x, expected[x]] ⩵ thresh[x]]

Out[20]= True

In[21]:= Timing[N[thresh[100000]]] {"seconds elapsed", "calculated value"}

Out[21]= {0.3125 seconds elapsed, 0.544837 calculated value}

This isn’t without its drawbacks, though. Due to its composition, it has underflow issues for some
values, including integer ones.
For this reason, it’s safer to visualize the trend of the probability threshold as n increases with our
original Px or its interpolated counterpart.

In[22]:= DiscretePlot[P[x, N[expected[x]]], {x, 1, 100},

PlotLabel → "Probability of Expected Value", AxesLabel → {"days in year", "Px"}]

Out[22]=

20 40 60 80 100
days in year

0.58

0.60

0.62

0.64

0.66

Px

Probability of Expected Value

4 BirthdayProblem.nb

Printed by Wolfram Mathematica Student Edition

The expected number of people to let into a room until a match occurs
grows according to the square root of the number of days in the year:

In[23]:= DiscretePlot[expected[x], {x, 1, 100},

PlotLabel → "Expected number of people for a match",

AxesLabel → {"days in year", "people"}]

Out[23]=

20 40 60 80 100
days in year

2

4

6

8

10

12

people
Expected number of people for a match

This is one of the most practical takeaways of the birthday problem.
If we know how the expected value scales as n increases,
we can calculate the complexity  of an algorithm involving the birthday problem,
and make quick, reliable calculations for different versions of the birthday problem in general.

In[24]:= expectedSimplified[n_] := ⅇ^n * n^(-n) * Gamma[n + 1, n]

?? expectedSimplified

Out[25]=

Symbol

Global`expectedSimplified

Definitions
expectedSimplified[n_] := ⅇn n-n Gamma[n + 1, n]

Full Name Global`expectedSimplified

In[26]:= FullSimplify[expected[x] == expectedSimplified[x]]

Out[26]= True

In[27]:= t = Table[{x, N[expected[x]]}, {x, 1, 1000}];

In[28]:= FindFormula[t, x]

Out[28]= 0.684004 + 1.25279 x0.5

In[29]:= f[x_] = 0.684004 + 1.25279 * Sqrt[x]

Out[29]= 0.684004 + 1.25279 x

BirthdayProblem.nb 5

Printed by Wolfram Mathematica Student Edition

In[30]:= Plot[{expected[x], f[x]}, {x, 1, 10 000}, Frame → True,

PlotStyle → {Blue, Directive[Orange, Dashed]},

PlotLegends → {"actual", "approx."}]

Out[30]=

0 2000 4000 6000 8000 10 000

0

20

40

60

80

100

120

actual

approx.

Important note - Everything can be done using the probability distribution
px:

But be warned: We are dealing with a discrete probability distribution, meaning that there are limits
to our analytical capabilities with px.
px may be calculable for most non-integer values, but underflow issues worsen in its derivative and
become unavoidable in its integral.
We can calculate approximations by using our interpolation of px, but it has its limits regarding
accuracy as well, particularly when it’s integrated.

In[31]:= Plot[p[n, x], {x, 1, n / 2},

PlotLabel → StringForm["Probability Distribution for `` days", n],

AxesLabel → {"person", "p first match"}]

Out[31]=

50 100 150
person

0.005

0.010

0.015

0.020

0.025

0.030

p first match
Probability Distribution for 365 days

Mode:

The mode of a probability distribution is defined to be its maximum.
In this case, the mode can be understood as the person that is most likely to create the first match
after entering the room.
We know that px can be applied to non-integer values, but finding a maximum analytically is too
hard for Mathematica (due to underflow).

6 BirthdayProblem.nb

Printed by Wolfram Mathematica Student Edition

An easy workaround is to find the maximum of our interpolated px:

In[32]:= max = FindMaximum[pInt[x], x]

Out[32]= {0.0323209, {x → 20.1088}}

Thus, the mode is:

In[33]:= mode = x /. max[[2]]

Out[33]= 20.1088

We can and should also find the mode for discrete values:

In[34]:= modeDiscrete = Extract[{Floor[mode], Ceiling[mode]},

Position[{p[n, Floor[mode]], p[n, Ceiling[mode]]},

Max[{p[n, Floor[mode]], p[n, Ceiling[mode]]}]]]

Out[34]= {20}

As well as the corresponding probability:

In[35]:= N[p[n, #] & /@ modeDiscrete]

Out[35]= {0.0323199}

Note: We are using tuples in the discrete case, since there can be two discrete modes for some
values of n (e.g. 342).

Median:

The median of a probability distribution is defined to be the point at which the cumulative probabil-

ity reaches
1

2
.

In this case, the median can be understood as the person that brings the probability of a match
over 50% after entering the room.
The second we see “cumulative probability”, we should directly think of Px.

However, it is important to keep in mind that Px (x) ≡ 
1

m

px (x)ⅆ x for the continuous case and

Px (m) ≡
i1

m

px (i) for the discrete case.

In[36]:= FullSimplify[P[n, x] ⩵ Sum[p[n, i], {i, 1, x}], x ∈ Integers]

Out[36]= True

This means that we can use our Px to verify that our calculations are correct, but our goal remains
to use only the probability distribution.

In[37]:= pIntIntegral[x_] = Integrate[pInt[x], x]

Out[37]= InterpolatingFunction
Domain: 1, 366
Output: scalar

[x]

In[38]:= interpolatedMedian = x /. FindRoot[pIntIntegral[x] ⩵ 0.5, {x, expected[n]}]

Out[38]= 23.2611

BirthdayProblem.nb 7

Printed by Wolfram Mathematica Student Edition

This is where the integral of our interpolation of px reaches
1

2
, but let’s verify it with Px:

In[39]:= P[n, interpolatedMedian]

Out[39]= 0.515464

So, Px doesn’t seem to approve completely. Let’s try and find the true median using the interpola-
tion of Px:

In[40]:= median = x /. FindRoot[PInt[x] ⩵ 0.5, {x, expected[n]}]

Out[40]= 22.7677

In[41]:= P[n, median]

Out[41]= 0.5

It stands to reason that the interpolation of Px is more accurate than the integral of the interpola-
tion of px.
We can see that they don’t differ by much, but it’s enough to make a notable difference when
finding the median. Here are the plots of both:

In[42]:= Plot[{PInt[x], pIntIntegral[x]}, {x, 1, 2 * Sqrt[n]}]

Out[42]=

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

We can and should also find the median for discrete values:

In[43]:= medianDiscrete = First@FirstPosition[Accumulate[p[n, #] & /@ Range[n + 1]], x_ /; x > 0.5]

Out[43]= 23

Mean (Expected Value):

The expected value is the most straight forward component to be derived from the probability
distribution.
In this case, the mean can be understood as the number of people we expect to need to let into the
room before we have our first match.
We named it in the beginning; it’s simply the product of each probability in our distribution and its
value for a discrete distribution.

In[44]:= mean = N[Sum[p[n, x] * x, {x, 1, n + 1}]]

Out[44]= 24.6166

8 BirthdayProblem.nb

Printed by Wolfram Mathematica Student Edition

This time around, it actually isn’t necessary to calculate a “discrete mean”, since a non-integer
mean/expected value is well-defined,
even for discrete probability distributions. If we were to, we would just round to the nearest integer.

In[45]:= meanDiscrete = Round[mean]

Out[45]= 25

Probability Threshold:

I defined before what I call the “Probability Threshold” to be the probability of a match at which we
can rightfully say that we expect a match.
It can be calculated by taking the integral of the probability distribution from the beginning to the
expected value.

In[46]:= N[pIntIntegral[expected[n]]]

Out[46]= 0.54212

This isn’t what we saw before, and we can easily see this result is very inaccurate by comparing with
Px:

In[47]:= N[P[n, N[expected[n]]]]

Out[47]= 0.557151

This is undoubtedly the same issue as before, namely that taking the integral of our interpolation of
px cost us too much accuracy.

BirthdayProblem.nb 9

Printed by Wolfram Mathematica Student Edition

